
DIRECTCSOUND AND VMCI:

THE PARADIGM OF INTERACTIVITY

by Gabriel Maldonado

1. INTRODUCTION

Csound was initially thought of as a deferred-time synthesis language as were all the
other synthesis languages, like MUSIC V, available at that time. That view of synthesis
languages remained essentially unchanged from the beginning of ‘60s to recent times.
This paradigm still continues to satisfy many composers’ needs. And although this
approach still has several important advantages over its real-time successors, it is
impossible to ignore that the absence or real-time synthesis impedes composers’ direct
and immediate relationship with their sonic material.

In its original version, Csound couldn’t be used in live performances because the
processing speeds of the standard computers of that time (the 1980’s) were insufficient
for real-time synthesis. Consequently, the original Csound language didn’t include any
live-control functions. During the early 90’s, Barry Vercoe (the creator of Csound) added
some MIDI oriented opcodes to use for real-time control. At that time, the only machines
capable of running Csound in real-time were Silicon Graphics machines and expensive
UNIX workstations.

Nowadays, PCs with Intel processors have become fast enough to run Csound in real-
time. DirectCsound, a real-time version of Csound, has filled a lot of the gaps in the
original CSound interactive functionality by adding opcodes that allow live control of
parameters. In this version, many new features have been implemented, such as control
of MIDI input/output (which enables Csound to connect with external world). Also, there
has been a reduction of the latency problems which appeared unsolvable when the first
real-time versions of Csound were released.

The new functionality allows total control over synthesis parameters, all of which can
be defined by the user in a very flexible way. This flexibility, together with unlimited
synthesis power, makes DirectCsound superior to any hardware MIDI synthesizer
available now. Just a few years ago, owning a workstation with real-time synthesis
processing power at home was unthinkable. Such features were available only to
machines costing hundreds of thousands of dollars.

But DirectCsound is free, and it is sufficient to have run it on a cheap PC with audio
card. This minimal set up enables users to compose music interactively, and also, use
CSound for live performances. It is now possible to think of Csound as a universal
musical instrument.

The newest features of Csound will be explained in the following sections through
several examples.

In last section, we will demonstrate some functions of VMCI (Virtual Midi Control
Interface, a program that emulates several types of MIDI controllers). VMCI has been
designed in order to provide a software tool which enables users to control DirectCsound
in real time. It can even be used with other hardware/software MIDI stuff.

2. SPECIFIC FEATURES OF DIRECTCSOUND

2.1 Inputs and Outputs

With DirectCsound, a musician can use both MIDI IN and MIDI OUT ports to send
and receive data. This feature allows real-time control of any synthesis parameter.

Regarding audio outputs, the user can choose two different types of drivers:

1. old MME (Multi Media Extensions) driver, which was introduced with Windows
3.1, and

2. new DirectX driver (DirectSound APIs), which allows very low latency, practically
achieving the total absence of any perceptible delay in real musical situations. This
allows to us to trigger DirectCsound from a MIDI keyboard, and thus retain the
interactivity of any hardware MIDI synthesizer.

DirectCsound automatically recognizes all installed MIDI ports, as well as DirectX
and MME audio ports.

DirectCsound can activate both audio DAC output and file writing of samples,
allowing hard-disk recording of a real-time performance.

As for the number of audio channels, at the present time, DAC output can only handle
mono and stereo. Whereas the new opcode fout allows composers to write to files with
any number of channels. Notice that the fout opcode is totally independent from the out
opcode. So, it is possible to record a real-time session to a multi-track file with four,
eight, twelve tracks, etc. (Obviously, this is possible only if the hard-disk is fast enough.
Otherwise it is possible to use a RAM-disk by copying the recorded file to the hard-disk
at the end Csound real-time session). Presently, only monophonic or stereophonic
monitoring is possible during live performance, but there is always the potential to play
the multi-channel pre-generated files afterwards, and record them to another real-time
multi-track format (like a digital 8 track recorder).

At last, DirectCsound permits a console window with up to 2050 lines of text
(standard DOS windows only allow 25 lines). This makes orchestra and score errors
faster to find.

2 Virtual Sound

2.2 Orchestra opcodes

DirectCsound has several opcodes which haven’t been implemented in the standard
version of Csound as of yet. (Most of them have already been ported to canonical
Csound, and others will be ported soon). Below is a list of the opcodes that I’ve
implemented so far (only some have been ported to the canonical version). For further
information about each opcode, see the manual.

MIDI controllers
midic7, midic14, midic21, ctrl7, ctrl14, ctrl21
initc7, initc14, initc21
slider8, slider16, slider32, slider64, slider8f, slider16f, slider32f, slider64f, s16b14,
s32b14 - return a signal according to incoming MIDI control-change messages.

Micro-tuning together with MIDI
cpstmid - enables definition of micro-tone scales. This opcode is designed to be used with MIDI.

MIDI generators
noteon, noteoff, ondur, ondur2 - send note-on and note-off messages to the MIDI-out port.
moscil, midion - send streams of note-on and note-off messages to the MIDI-out port.
All the MIDI-message generating process is controllable by input arguments.
outic, outkc, outic14, outkc14, outipb, outkpb, outiat, outkat, outipc, outkpc, outpiat,
outkpat - send the corresponding MIDI CHANNEL messages.
mclock, mrtmsg - send the corresponding MIDI SYSTEM REAL-TIME messages

General MIDI in/out message handling
midiin, midiout, midion2, nrpn - handle byte-level MIDI messages
mdelay - MIDI delay

MIDI note duration extension
xtratim, release - allows the extension of duration in MIDI-activated notes. It extends the
note-off time.

Subroutine call
call, calld, callm, callmd - allows an instrument to call an another instrument. Equivalent
to subroutine calls available in other programming languages such as Basic or C.
parmck, parmtk, parmca, parmta, rtrnck, rtrntk, rtrnca, rtrnta - allows the passing of
arguments to the called subroutines as well as receiving return arguments, as in
structured programming languages.

3Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

Signal wrapping
wrap, mirror - wrap input signal in two different ways (see manual).

Interpolators
ntrpol - linearly interpolates between two signals.

WaveGuide algorithms
wguide1, wguide2 - Plucked string and struck-plate physical models
flanger - a flanger which can be totally configured by the user.

Exponential segment envelope generator
expsega - similar to expseg, but more precise with audio signals

16-bit tables related opcodes (save half RAM space)
loscil2 - similar to loscil, but can handle 16-bit samples stored into a table (together with
GEN22), halving computer RAM needs.
fof3 - similar to fof2 but it can handle 16-bit samples and gives a better audio quality
because of linear interpolation
lposcint - oscillator that allows the variation of the starting point and ending point of a
table during reading operations at k-rate. Optimized to work with 16-bit sample tables.

Signal visualization
printk2 - prints k-rate signal (only when they vary).

High-precision oscillators
poscil - similar to oscili but allows a very high frequency resolution.
lposcil - oscillator that allows to vary the starting point and ending point of a table during
reading operations at k-rate.
lposcint - like the previous opcode, but for 16-bit tables.

FM oscillator
foscili2 - similar to foscili, but allows different function tables for carrier and modulator.

Filters
lowres - resonant low-pass filter.
lowresx, tonex, atonex, resonx - banks of serially-connected filters (to obtain a steeper
curve).
vlowres - bank of variable resonant low pass filters, serially connected.
resony - bank of variable second-order band-pass filters, connected in parallel.

4 Virtual Sound

Fast power of two
powoftwo, logbtwo - power of two or logarithm base two (faster than standard pow
opcode)

Information about sample-tables
ftlen2 - returns the length of a table generated by GEN01 or GEN22, using deferred
allocation.
nsamp - returns the number of samples actually loaded into a table from a file.
ftsr - returns sampling frequency of an audio file loaded into a table.

New GEN functions
GEN22 - loads a file of samples into a table, similar to GEN01, but it stores
samples using 16-bit integers instead of 32-bit floating-points, halving computer
RAM need.
GEN23 - reads values from an external text file and stores it into a table.
GEN24 - reads values of another table and scales them according to minimum/maximum
limits defined by the user.

Trigger
trigger - generates a boolean true value (1 = true), when a signals meets a threshold
defined by the user. In any other case, trigger generates false (0 = false). Value 1 (true)
can be used by other opcodes to start any kind of events.

Multi-track file writing
fout - write an arbitrary number of audio signals to a multi-track file.
foutk - same as above, at k-rate.
fouti - same as above, at i-rate.
foutir - same as above, but takes care of duration of the corresponding note.
fiopen - create a file and enable it for reading or writing.
vincr - accumulator, increment an audio variable of an arbitrary value.
clear - clear an audio variable (set it = 0).

Multi-track file reading
fin - read signals from a multi-track file at a-rate.
fink - some as above, at k-rate
fini - some as above, at i-rate

Artificial foldover
fold - generates artificial foldover on an input signal.

5Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

2.3 Score opcodes and operators

New score opcodes
{ } - Loops with the possibility of nesting
F - score tables

Nested macros
New macro syntax that allows nesting.
Nesting means having more than one loop, one inside the other. For example, if we

have four composed blocks called A,B,C,D and we want to repeat 4 times the first block,
3 times the second, 2 times the third and no repetitions for the fourth; in this case we will
have a sequence of the following type:

A-A-A-A-B-B-B-C-C-D.

The first four repetitions of block A can be generated by a loop of 4 iterations; likewise
the 3 repetitions of B and the 2 repetitions of C. But, suppose to wish to repeat the entire
construction for four times, we will have the following sequence:

A-A-A-A-B-B-B-C-C-D-A-A-A-A-B-B-B-C-C-D-A-A-A-A-B-B-B-C-C-D-A-A-A-A-B-B-B-C-C-D.

This sequence can be easily generated by an external loop with four iterations that
nests the three internal loops. If using nested loop for a verbatim repetition seems
impractical because of the initial difficulty of learning this technique, remember that one
can find many compositional situations in which the parameters of each iteration should
be varied according to user-defined algorithms. In these cases, parameters must be
different for each iteration. So, calculating each parameter by hand could be far more
complex and boring than the previously described technique. It is more convenient to use
nested loops because they create a more synthetic and readable score writing.

New macro operators
T - returns an element contained by a score table, by giving the corresponding index.
R - returns a random number
^ - power operator
% - remainder operator (modulus)

3. USING DIRECTCSOUND IN REAL-TIME

In this section some MIDI-controlled orchestra examples are analyzed.

6 Virtual Sound

In order to use DirectCsound in real-time, it is necessary to start it with the appropriate
flags. Thes are not present in the canonical version at the present time.

DirectCsound is capable of handling both incoming and outgoing MIDI data. With
regards audio, there is the option of using old MME drivers or new low-latency DirectX
drivers. However, conflicting flags can’t be used at the same time. The audio buffer is
unique in the DirectX driver while it is possible to specify a number of buffers when
using old MME driver. Notice that non-standard flags have characters ‘-+’ as prefix,
whereas the standard ones only have ‘-’.

User must use the following flags in order to run the examples:

-b <number> set buffer length (standard flag)
-+p < number > set buffer number of MME driver (don’t use with -+X)
-+X activate DirectX (don’t use with -+q)
-+q activate MME (don’t use with -+X)
-+K activate MIDI IN port
-+Q activate MIDI OUT port
-+j < number > set the maximum number of lines of text visualized in DirectCsound

console (useful for debug)

When more than one MIDI port is available, the DirectCsound console window will
show a list of all the port names, and ask the user to select the required port.

In the following examples, a basic knowledge of MIDI protocol is taken for granted.

3.1 A simple example: sine.orc

This is the simplest example. It consists of an oscillator whose frequency is controlled
by a MIDI note number sent by a MIDI keyboard.

; sine.orc
sr = 44100
kr = 441
ksmps = 100
nchnls = 1

gi1 ftgen 1, 0, 1024, 10, 1

instr 1
ifreq cpsmidi
iamp ampmidi 10000

7Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

a1 oscili iamp, ifreq, 1
out a1
endin

This is the score:

; sine.sco
f0 3600

This example must be activated with the following command line if the user has
already installed DirectX on his computer:

csound.exe -+X -+K -b200 sine.orc sine.sco

...otherwise he must use old MME driver with the following command line:

csound.exe -+q -b500 -+p8 -+K sine.orc sine.sco

DirectCsound will prompt the user to enter the audio out port number, as well as, the
MIDI out port number in the console window.

After the user has typed in that data, it is possible to play notes on a master-keyboard
(connected via a MIDI-IN port) and to listen to sinusoids with frequency that
corresponds to the pressed key. The timbre will not be interesting, but this orchestra is
useful to verify if the system is set up correctly. If sound interruptions are present, it is
necessary to increase buffer length by changing the number following flag -b.

In this case, the opcodes handling MIDI are standard, i.e. cpsmidi, and return the
frequency of the pressed key. ampmidi, returns the amplitude.

Notice that score only contains the f0 3600 statement. That allows Csound to compile
in real-time for 3600 seconds. Actually, the audio table containing the sinusoid is
generated directly inside the orchestra, by ftgen opcode. It is possible to terminate the
Csound session at any moment by pressing CONTROL-C (after being sure that the
console window has got the focus).

Adding an amplitude envelope to sine.orc
Let’s modify instrument 1 of the previous orchestra as follows:

instr 1
ifreq cpsmidi

8 Virtual Sound

iamp ampmidi 10000
kenv linsegr 0, .1, 1, .3, .5, .2, 0
a1 oscili iamp, ifreq, 1

out 1*kenv
endin

Notice, the linsegr opcode is used. This opcode handles the release stage when a
current note receives a MIDI note-off message. The resulting action will extend normal
note duration for the time the user has assigned to the corresponding parameter (that is
second to last argument of line containing linsegr. The last argument contains the level
value that linsegr returns at the end of release).

linsegr automatically extends note duration, and release stage consists of only one
(exponential) segment. Notice that linsegr must be used only with MIDI. Otherwise it
doesn’t produce any extension of note duration.

What if a complex envelope is needed in the release phase consisting of more
segments? (For example, a crescendo followed by a diminuendo.)

The next example will show how to implement it by means of two new opcodes:
xtratim and release.

3.3 Extending the life of a MIDI-activated note: xtratim and release

In this example we suppose that the user wants a more complex envelope in the
release phase of a MIDI-activated note.

Now, it is necessary to make a distinction between two types of orchestra instruments:
those which are activated by the score and those which are activated by a MIDI note-on
message. The reason we need this distinction is that sometimes some opcodes operate
correctly only on instruments designed to be activated by MIDI. Most opcodes, however,
can operate on both score-activated instruments and MIDI-activated instruments.

Actually, extending a note in a score-activated instrument is very easy. Duration is
defined by the p3 parameter of the i-statement of the score. To extend it, it is sufficient
to assign a starting value to p3 plus a value referring the wanted extension of duration,
expressed in seconds:

p3 = p3+1 ;adds 1 second to the duration of current note

This is true for score-activated instruments.

In MIDI-activated instruments, p3 is meaningless because corresponding notes remain
active until a note-off message is received.

9Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

The only ways to extend the duration of these notes is by

• using MIDI-oriented envelope opcodes (those terminating with an ‘r’, linenr,
linsegr, expsegr, the ‘r’ being for ‘release’), or

• by using two opcodes, specially designed to accomplish this task: xtratim and
release.

Look at the following example:

instr 1
inum notnum
icps cpsmidi
iamp ampmidi 4000
;############## complex MIDI envelope #################

xtratim 1 ; extra-time, i.e. release duration
krel init 0
krel release ; outputs release-stage flag (0 or 1 values)
if (krel > .5) kgoto rel ; if in release-stage goto release section
;************ attack and sustain section ***********
kmp1 linseg 0, .03, 1, .05, 1, .07, 0, .08, .5, 1, .2, 50, .2
kmp = kmp1*iamp

kgoto done
;************ release section **********************
rel:
kmp2 linseg 1, .05, 4, .7, 0
kmp = kmp1*kmp2*iamp
done:
;###

a1 oscili kmp, icps, 1
out a1
endin

This instrument appears complex, but it isn’t. The purpose of the xtratim opcode is to
add extra time to the duration of instr 1. The extra-time amount is defined by the input
argument (one second in the example). Notice that xtratim has no output. The purpose
of the release opcode is to indicate when the corresponding note is in the normal stage
and when it in at the extra time stage (the release time). In this case, there are two
envelopes, performed in succession. Notice one important detail. In most cases, the

10 Virtual Sound

sustain envelope isn’t performed in its entirety because it is impossible to foresee how
much time the performer leaves the key pressed. So, the last value of variable kmp1
could not be equal to the initial value of kmp2. In order to avoid discontinuities in the
sound («tics»), it is necessary to multiply last value of kmp1 by kmp2. (kmp2 must set to
value 1 at the beginning, in order to leave initial output argument of linseg unmodified.)
The release-stage envelope acts as a multiplier for the last value from the envelope of the
previous stage. In the example, initially we have an ascending release which after a
second after descends toward zero.

3.4 Continuous controllers: varying amplitude and frequency of vibrato
while playing notes.

;vibrato.orc
instr 1

ifreq cpsmidi
iamp ampmidi 10000
kfrqvib midic7 1, 0, 1
kampvib midic7 2, 0, 1
kvib oscili kampvib, kfrqvib, 1
kenv linsegr 0, .1, 1, .3, .5, .2, 0
a1 oscili iamp, ifreq*powoftwo(kvib), 1

out a1*kenv
endin

This example allows one to play a note on the master-keyboard, and varying both the
frequency and the amplitude of vibrato simultaneously. Vibrato is generated by an
oscillator (performing at k-rate),that generates a control signal which is multiplied by the
base frequency of the audio signal oscillator. The frequency and amplitude of the
oscillator generating vibrato can be varied continuously by means of MIDI control-
change messages. The opcode used to handle these messages is midic7 which allows
scaling of the 7-bit raw values (incoming by the MIDI in port with a 0-127 range) into
a minimum-maximum range defined by the user.

There are three midic7 input arguments plus an optional one: MIDI control message
number (for example 1 is corresponding to modulation-wheel, 2 to breath-control etc.),
minimum and maximum values, used to re-scale the output.

Notice the use of powoftwo() function, which gives a multiplier varying exponentially
instead than linearly: if we used a direct sum of vibrato signal and the note base
frequency, the vibrato would generate large frequency variations in the low frequency
range and little variations in high frequency range. In this case, multiplying by an

11Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

exponent enables us to express the variation in octaves instead of cps. Although the
mathematical reasoning behind this concept isn’t too complex, it is beyond the scope of
this chapter. Assuming that the range of the second instance of midic7 opcode (which
controls vibrato amplitude) is expressed in octaves, variations in the range of 0 to 1
octaves are sufficient.

3.5 More complex vibrato, delay and tremolo, controllable in real-time

The previous example is not optimized for speed. If the performer plays more than one
note at the same time, several instances of midic7 opcode are activated that generate an
identical signal. This is a useless waste of processing time.

It is necessary to think a little about how Csound instruments and opcodes work.
A Csound instrument is a template used by Csound when it activates the

corresponding note.
When this happens, an ‘instance’ of that instrument, together with its data, is

generated. Csound instruments are polyphonic. So, more than one note of the same
instrument can be activated with different parameters at the same time. Each of these
notes is actually an instance of the corresponding instrument.

In a similar way, multiple instances of the same opcode can be called by the same
instrument (in the previous example this happens with midic7 opcode). So, we have a
hierarchy of instances. Several notes of the same instruments generate several instances
of that instrument, each containing more instances of the same opcode. Csound variables
represent signals which can be control signals, audio signals or initialization parameters
(the last choice remains constant for all note duration). It is important to notice that the
variables contained inside an instrument are local. This means that variables with the
same name, placed in different instruments, are different in all respects. Furthermore,
even considering the same instrument, variables with the same name are different in each
new instance of that instrument, and they contain different but independent values for
each parameter that correspond to activating notes.

Let’s return to the previous example. When the performer activates a chord consisting
of 3 notes, the two instances of midic7 contained by instr 1 are actually multiplied by
three, creating a total of 6 instances, which are useless because they all produce the same
values. This is a waste of processing time. It is better to use the MIDI-control opcodes
in a separate instrument which is activated only once, and remains active for the duration
of current Csound session. These instruments are activated by the score instead of by a
MIDI controller.

In order to make signal produced by such an instrument visible to other devices (and
in particular by the MIDI activated instrument which needs to access the values
produced by controllers), it is necessary to use global variables. Global variables have

12 Virtual Sound

orchestra scope, not instrument scope. This means that they are common and visible by
all instruments of the orchestra. Furthermore, unlike local variables, they are common to
all instances of all currently active instruments.

Let’s look at the example below:

;orchestra

sr = 44100
kr = 441
ksmps = 100
nchnls = 1

gi1 ftgen 1, 0, 1024, 10, 1, .2, 0, 0, .1, 0, 0, .05 ; audio table
gi1 ftgen 2, 0, 129, 7, 0, 4, -1, 64, -1, 4, 0, 56, 0 ; tremolo table

;## vibrato functions
gi1 ftgen 50, 0, 513, 10, 1 ;sine
gi1 ftgen 51, 0, 513, 7, 1, 511, -1 ; falling saw tooth
gi1 ftgen 52, 0, 513, 7, -1, 511, 1 ; rising saw tooth
gi1 ftgen 53, 0, 513, 7, 0, 128, 1, 256, -1, 128, 0 ;triangle
gi1 ftgen 54, 0, 513, 7, 1, 256, -1, 255, 0 ;square
gi1 ftgen 55, 0, 513, 7, 0, 170, 0, 0, 1, 170, 1, 0, -1, 170, -1, 0, 0 ;three steps
gi1 ftgen 56, 0, 513, 7, 0, 128, 0, 0, 1, 128, 1, 0, 0, 128, 0, 0, -1, 128, -1, 0, 0 ;4 steps
gi1 ftgen 57, 0, 513, 7, 1, 128, 1, 0, 0, 128, 0, 0, -1, 128, -1, 0, 0, 128, 0 ;4 steps 2
gi1 ftgen 58, 0, 513, 7, -1, 128, -1, 0, 0, 128, 0, 0, 1, 128, 1, 0, 0, 128, 0 ;4 steps 3
; fourth, fifth and octave
gi1 ftgen 59, 0, 513, 7, 0, 128, 0, 0, 5, 128, 5, 0, 7, 128, 7, 0, 12, 128, 12
; octave, fourth, fifth and unison
gi1 ftgen 60, 0, 513, 7, 12, 128, 12, 0, 5, 128, 5, 0, 7, 128, 7, 0, 0, 128, 0
;4 glissando
gi1 ftgen 61, 0, 513, 7, -1, 90, -1, 38, 0, 90, 0, 38, 1, 90, 1, 38, 0, 90, 0, 38, -1

gi1 ftgen 100, 0, 8193, 5, .001, 8193, 1 ; exponential curve for slider mapping

gk1 init 0
gk2 init 0
gk3 init 0
gk4 init 0
gk5 init 0

13Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

gk6 init 0
gk7 init 0
gk8 init 0
gaout init 0

;////////////////////////////
instr 1

;////////////////////////////
kvib oscili gk1, gk2, i(gk3)+.5
atrem oscili gk4, gk5, 2
ifreq cpsmidi
iamp ampmidi 10000
aenv linsegr 0, .05, 1, .2, .2, 10, .2, .2, 0
a1 oscili aenv*iamp*(1+atrem), ifreq*powoftwo(kvib),1

vincr gaout, a1
endin

;////////////////////////////
instr 100

;////////////////////////////
initc7 1, 3, (50-50)/(61.5-50)

gk1 ctrl7 1, 1, 0, 1 ; vibrato amplitude
gk2 ctrl7 1, 2, .5, 20, 100 ; vibrato frequency
gk3 ctrl7 1, 3, 50, 61.5 ; vibrato table
gk4 ctrl7 1, 4, 0, 1 ; tremolo depth
gk5 ctrl7 1, 5, 2, 20, 100 ; tremolo frequency
gk6 ctrl7 1, 6, 0, 1 ; wet/dry ratio
gk7 ctrl7 1, 7, 0, 1 ; delay feedback
gk8 ctrl7 1, 8, 1, 1000 ; delay time
gk8 tonek gk8,2
a8 interp gk8
a1 init 0
a1 vdelay gaout+a1*gk7,a8,1000

out a1*gk6+gaout*(1-gk6)
clear gaout
endin

;score
i100 0 3600

14 Virtual Sound

As you can see, the score doesn’t need the f0 statement because the duration of the
real-time session is already set to 3600 seconds by the only note activating ëglobal’ instr
100. We will see the purpose of instr 100 later.

Instrument 1 has three oscillators. The first and the second oscillator generate vibrato
and tremolo, whereas the third one generates the audio signal. Some remarks about instr
1 follow.

1. Vibrato amplitude is defined externally from instr 1, as well as, vibrato frequency,
vibrato table number, tremolo depth and tremolo frequency. These parameters are
supplied to the oscillators by means of the global variables gk1, gk2, gk3, gk4 and
gk5. We will see the storage locations of these variable later.

2. out opcode is not present inside instr 1, because its output is assigned to the gaout
global variable. The reason we use a global variable and do not send the output
signal directly to the out opcode is that the signal is reused by another instrument
that adds an effect (a delay) and balances the wet/dry ratio before it is assigned it
to the out opcode. When sending an audio signal to the gaout global variable,
simply assigning it is not sufficient because a global variable is common to all
orchestra instrument instances. So, if instr 1 is polyphonic and its output is
assigned directly to gaout, the signal generated by any concurrent instances of instr
1 would be replaced by the one immediate instance. In that case, when gaout is
connected to the out opcode (in instr 100), the signal would be monophonic (not
polyphonic) because it would contain only the output of last instance of instr 1 (last
voice). In order to avoid this drawback, we have to mix output of instr 1 with the
content of gaout instead of simply assigning the raw value directly. Here this
operation is accomplished with the vincr opcode.
vincr does this:

gaout = gaout + a1
...but is faster. It is an accumulator, especially designed to sum a signal and a
mixing line. After connecting gaout to the out opcode (placed in instr 100), it is
necessary to clear gaout by setting it to zero. Otherwise, the variable will ‘explode’
because values would continue accumulating endlessly.
To set gaout to zero, the following line would be sufficient:

gaout = 0
...but the clear opcode is used instead. It is designed specifically to complete this
task quickly (in this example the increasing in speed is not particularly evident, but
it is apparent, in complex mixing lines when several variables have to be zeroed at
the same time. See manual).

Instrument 100 is called by the score only once per Csound session. This instrument
has three functions:

15Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

1. MIDI control messages handling, by filling global variables. Such variables have
the following purposes:
gk1 - vibrato amplitude
gk2 - vibrato frequency
gk3 - select vibrato table number
gk4 - tremolo depth
gk5 - tremolo frequency
gk6 - wet/dry delay ratio
gk7 - delay feedback (to allow echo)
gk8 - delay time

2. generation of a delay effect (that is unique for all notes of all instruments)

3. master output control.

Let’s examine this instrument more closely. Noticed that there is no midic7 instance
in instr 1. In fact, the MIDI control-change messages are controlled by several instances
of ctrl7, an opcode similar to midic7 but with the flexibility to choose the MIDI channel.
Consequently, it can be used in score-activated instruments. Assigning midic7 to a score-
activated instrument causes CSound to crash. (The midic7 channel is implicitly implied
and has the same MIDI channel number as the instrument that activates it.)

Notice that global variables are initialized before any instruments are declared in the
header section of orchestra. If global variables are not declared first errors appear caused
by using variables before they are initialized.

The purpose of initc7 opcode is to initialize the first output value of the corresponding
MIDI control-change handling opcode (works both with midic7 and ctrl7, see manual).

3.6 Non-linear distortion, micro-tuning and slider banks

Let’s analyze the following orc/sco pair:

;**** distortion.orc
sr = 44100
kr = 441
ksmps = 100
nchnls = 2

ga1 init 0
gk12e4 init 882

16 Virtual Sound

;///
instr 1

;///
kbend pchbend -1,1
i1 cpstmidi(gk12e4)
k2 linsegr 0, 1.5, 1, 6, .15, 1, .15, 1.2, 0
a1 oscili k2, i1*powoftwo(kbend), 1

vincr ga1, a1
endin

;///
instr 2

;///
gk12e1,gk12e2,gk12e3,gk12e4,gk12e5,gk12e6,gk12e7,gk12e8 slider8f 1,\
\; ctl min max init func icutoff

1, .1, 5, .1, 0, 5, \;1- distortion
2, 2, 500, 20, 92, 5, \;2- filter cutoff
3, .05, 8, 1, 92, 5, \;3- filter resonance
4, 880, 888.5,882, 0, 10000,\;4- micro-tuning table
5, 0, 8, 0, 0, 5, \;5- amp. of dist.modulation
6, .1, 10, 1, 92, 5, \;6- freq. of dist.modul.
7, 0, 200, 0, 0, 5, \;7- amp. of filter modulation
8, .1, 10, 1, 92, 5 ;8- freq. of filter modulation

gk12e9 ctrl7 1, 9, 870, 878.5 ;9- distortion table

kosc oscili gk12e5,gk12e6,879
kosc tonek gk12e1+kosc,5
aosc interp kosc

amod tableikt ga1*aosc, int(gk12e9),1, .5, 0

kfilt oscili gk12e7, gk12e8, 879
kfilt tonek gk12e2+kfilt, 5
kres tonek gk12e3, 1.5

amod lowres amod, kfilt, kres
amod = amod*6400
adel delay amod,.3

outs amod, adel

17Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

clear ga1
endin

;///
;***** distortion.sco

;## audio table ##
f1 0 1024 10 1 ;sinusoid

;## exponential slider mapping ##
f92 0 4097 5 .01 4096 100

;## distortion tables ##
f870 0 4097 9 .5 1 90 ;sigmoid
f871 0 4097 8 8 2032 1 32 -1 2032 -8 ; cubic spline 1
f872 0 4097 8 0.3 1024 1 2048 -1 1024 -0.3 ; cubic spline 2
f873 0 4097 8 0 256 1 3584 -1 256 0 ; cubic spline 3
f874 0 4097 8 -1 512 1 512 -1 2048 -1 512 1 512 -1
f875 0 4097 8 -1 512 1 512 -1 2048 1 512 -1 512 1
f876 0 4097 8 -1 512 6 512 -4 2048 1 512 -1 512 1
f877 0 4097 8 7 128 8 128 6 128 7 128 5 128 6 128 4 128 5 128 3

128 4 128 2 128 3 128 1 128 2 128 0 128 1 128 0
128 -1 128 0 128 -2 128 -1 128 -3 128 -2 128 -4 128 -3
128 -5 128 -4 128 -6 128 -5 128 -7 128 -6 128 -8 128 -7

f878 0 4097 8 12 128 8 128 6 128 7 128 5 128 6 128 4 128 5 128 3
128 4 128 2 128 11 128 1 128 2 128 0 128 6 128 0
128 -6 128 0 128 -2 128 -1 128 -3 128 -2 128 -4 128 -3
128 -5 128 -4 128 -6 128 -5 128 -7 128 -13 128 -8 128 -12

;## positive sinusoid ##
f879 0 1024 19 1 1 0 1

;## tuning tables ##
;# equal temperament #
; numgrades freqbase scaleRatio (eq.temp.)
; interval basekeymidi
f880 0 16 -2 12 2 261 60

1 1.059463094359 1.122462048309 1.189207115003
1.259921049895 1.33483985417 1.414213562373 1.498307076877
1.587401051968 1.681792830507 1.781797436281 1.887748625363

18 Virtual Sound

;# diatonic pure #
f881 0 16 -2 12 2 261.62 60 1 1.04166667 1.125 1.171875 1.25 1.3333 1.40625 1.5 1.5625 1.66666
1.777777777777 1.875

harmonic progression 1(36 steps)#
f882 0 64 -2 36 2 30.5 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36

;# harmonic progression 2(24 steps)#
f883 0 32 -2 24 2 30.5 24 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

;# harmonic progression 3(24 steps)#
f884 0 32 -2 24 2 15.25 24 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

;# harmonic progression 4(12 steps)#
f885 0 16 -2 12 2 61 60 4 5 6 7 8 9 10 11 12 13 14 15

;# harmonic progression 5(12 steps)#
f886 0 16 -2 12 2 61 60 8 9 10 11 12 13 14 15 16 17 18 19

;# harmonic progression 6(24 steps)#
f887 0 16 -2 12 2 61 60 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

;# ‘detuned’ scale #
f888 0 16 -2 12 2 261.62 60 1 1.111111111 1.142857143 1.25 1.285714286 1.388888889 1.428571429 1.5
1.607142857 1.666666667 1.714285714 1.928571429

;## note ##
i2 0 3600
e

This is an example of non-linear distortion with a shaping-table unique for all voices
of polyphony. This produces an electric-guitar-like, chord effect.

Let’s start with instr 1.

pchbend opcode controls MIDI pitch-bend messages. In this example, the output
values of this opcode cover a range of -1 to 1. This corresponds to pitch shifts down or
up an octave as defined by the powoftwo() function.

19Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

cpstmid opcode controls table parameters containing user-defined tuning systems.
cpstmid is similar to cpsmidi, because both are designed for use with MIDI-activated
instruments and require a table number as the input argument. The table is filled with
parameters and a set of frequency ratios (for more information see the manual). This
example shows different tuning systems can be selected by means of MIDI control-
change messages during the performance. In fact the gk12e4 global variable is sampled
and held in the initialization stage (i() function). So, its value is available as input
argument to cpstmid, and can change for each notes. (It remains constant for the entire
duration of one single note.) Notice that the gk12e4 variable is initialized in the header
section of orchestra. As mentioned earlier, an error appears if a variable is used before it
is defined.

linsegr opcode defines the amplitude envelope of a sinusoidal oscillator, and the
output of such oscillator is then distorted by instr 2. Oscillator output increments global
audio variable ga1, which is reused by instr 2. ga1 had been defined in the header section
- before it is called.

Instrument 2 starts with the slider8f opcode, that generates a bank of 8 sliders, giving
the possibility to set MIDI channel (a unique channel for all controllers), MIDI control
number, minimum and maximum values, starting value, an optional mapping table
number (if not used, set the corresponding argument to zero), and cutoff frequency of a
low-pass filter placed before the output, in order to smooth discontinuities due to low
resolution of 7-bit MIDI data. Such parameters must be defined for each controller, for
this reason the argument of slider8f opcode are split into eight text lines by using ‘\’
character, interpreted by Csound as line continuation. Notice that after the “\” character
it is possible to put comments starting with ‘“;” character.

As controllers needed in this orchestra are nine, and slider8f opcode can handle only
eight of those, another line containing ctrl7 opcode is added.

Variables interpreting the MIDI messages are:

gk12e1 - amount of distortion (corresponding to the amplitude of the signal generated
by the oscillator)

gk12e2 - cutoff frequency of the low pass resonant filter, used to make distorted
signals more musically, resulting very harsh to hearing otherwise

gk12e3 - filter resonance
gk12e4 - select the number of micro-tuning table (read by instr 1)
gk12e5 - amplitude of distortion-amount-modulating oscillator

20 Virtual Sound

gk12e6 - frequency of distortion-amount-modulating oscillator
gk12e7 - amplitude of cutoff-frequency-modulating oscillator, connected to resonant

low pass filter
gk12e8 - frequency of cutoff-frequency-modulating oscillator, connected to resonant

low pass filter
gk12e9 - select the number of table containing the wave-shaping function

The next oscillator is used as an amplitude-modulator for the ga1 signal (generated by
instr 1). This is equivalent to modulating the amount of distortion. The oscillator output
is summed with the output of the slider controlling the level of distortion (gk12e1). The
resulting value is then filtered to smooth the stepped shape of the output caused by the
low resolution of MIDI. This filtering stage prevents ‘tics’.

Filter output (k-rate signal) is then converted to a-rate (aosc variable) with the interp
opcode. It linearly interpolates between current kosc value and the previous one, again,
smoothing the signal.

Then, we can see tableikt opcode, which is similar to tablei (linearly-interpolated table
reading), but changes to the table number at k-rate. This opcode distorts the input signal
(which is ga1 in this example) in accordance with the corresponding waveshaping table.
In this example, this table can be changed during the performance of a note which allow
us to hear how the sound output changes according to the type of functions used by
current waveshaping table. Notice that the level of distortion modulates with the aosc
signal as it is multiplied by the ga1 signal.

Next oscillator modulates cutoff frequency of the lowpass resonant filter (wah-wah
effect). kfilt signal, generated by such oscillator, is then summed to an offset (gk12e2
signal, controlled by a slider), and filtered by a low pass filter in order to avoid tics. The
signal that controls the amount of resonance (gk12e3) is filtered, too.

Then, the output of the waveshaping function (amod variable) is sent to the resonant
low pass filter (lowres opcode) which is controlled in frequency and in resonance
amount by kfilt and kres. At last, the signal going to right channel is delayed of 0.3
seconds, in order to enrich output sound.

clear opcode zeroes ga1 variable in order to avoid new values to continue being
summed endlessly.

3.7 Granular synthesis

In this section a granular synthesis example will be presented, which allows real-time
control of almost every parameters.

21Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

; granular.orc
sr = 32000
kr = 320
ksmps = 100
nchnls = 2

garev1 init 0
gaout1 init 0
gaout2 init 0

;- - - - - - -

;///////////////////////////////////////
instr 100

;///////////////////////////////////////

gk_1, gk_2, gk_3, gk_4, gk_5, gk_6, gk_7, gk_8,\
gk_9, gk_10, gk_11, gk_12, gk_13, gk_14, gk_15, gk_16 slider161,\
\; ctl min max init func

1, 1, 20.5, 1, 0, \;1 audio table number
2, 0, 13.5, 1, 0, \;2 play speed
3, .5, 5, 3, 0, \;3 grain repeat speed
4, 0, 2, 1, 0, \;4 phase scanning speed of current sample
5, 0, 1, 0, 0, \;5 end frequency of glissandos
6, .005, 4, .5, 100, \;6 total duration of grains
7, 1/15, 1, .3, 0, \;7 attack time of grains
8, 1/15, 1, .3, 0, \;8 decay time of grains
9, 0, .12, 0, 0, \;9 reverb send level
10, 300, 8000, 3200, 0, \;10 reverb low pass filter
11, 0, 2, 0, 0, \;11 random amount of grain frequency
12, 0, 3, 0, 0, \;12 random amount of grain duration
13, 0, .2, .05, 0, \;13 left/right channel phase difference
14, 0, .5, 0, 0, \;14 random amount of starting grain phase
15, 0, 3, 0, 0, \;15 octaviation factor
16, .05, 2, 1, 0 ;16 global volume

gk_17, gk_18, gk_19, gk_20, gk_21, gk_22, gk_23, gk_24 slider8 1,\
\; ctl min max init func

17, 102, 105.5, 102, 0,\;17 harmonic tuning table number

22 Virtual Sound

18, 0, 8.5, 0, 0, \;18 amount of random changes in harmonic tuning table
19, 1, 1.5, 1, 0, \;19 left/right deviation of grain repetition speed
20, 0, 1, 0, 0, \;20 stating phase offset of grains
21, 0, 15, 0, 0, \;21 random amount of grain starting time
22, 0, 1, 0, 0, \
23, 0, 1, 0, 0, \
24, 0, 1, 0, 0

;************ REVERB and OUTPUT *************
arevb tonex garev1, gk_10,3
arev reverb2 arevb, 9, .05

outs gaout1 + arev, gaout2 + arev
clear gaout1, gaout2, garev1
endin

;//
instr 1

;//
ifmidi cpsmidi
iamp ampmidi 1

ifna = int(i(gk_1)) ;** left channel sample table
ifna2 = ifna ;** right channel sample table
imemlen = ftlen(ifna) ;** length of allocated table
ilen = nsamp(ifna ;** number of samples contained into the table
ilnDmem = ilen/imemlen ;** sampling length/table length ratio
ifsr = ftsr(ifna)/sr ;** sampling frequency of audio sample up sr
isrDmem = sr/imemlen ;** necessary to calculate actual frequency
isrDdur = ftsr(ifna)/ilen ;** sampling frequency of audio sample up number of samples

krdharm linrand gk_18 ;** random harmonic variation amount
krdharm2 linrand gk_18
krdharm table krdharm, i(gk_17)
krdharm2 table krdharm2, i(gk_17)
kform table gk_2, 151
kform = (ifmidi/127*.98) *kform*isrDmem*ifsr
krndpch trirand gk_11 ;** random pitch variation of grains
krndpch2 trirand gk_11
kform1 = kform*powoftwo(krndpch)*krdharm ;** right chan. freq.

23Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

kform2 = kform*powoftwo(krndpch2)*krdharm2 ;** left chan. freq.
krnd trirand gk_21
kfund = 2^(gk_3+krnd) ;** speed of grain repeats

kphsrate = gk_4*isrDdur

krndphs linrand gk_14 ;** random phase amount

kphs init 0
kphs phasor kphsrate
kphs = (kphs+krndphs+gk_20) * ilnDmem
kphs wrap kphs, 0, ilnDmem

kphs2 init 0
kphs2 phasor kphsrate, i(gk_13) ;** right channel phase can be varied for stereo effect
kphs2 = (kphs2+krndphs+gk_20)*ilnDmem
kphs2 wrap kphs2, 0, ilnDmem

kgliss = gk_5 ;** grain glissando
krnddur linrand gk_12 ;** random amount of grain duration
kdur = (1+krnddur) * gk_6
kris = kdur * gk_7
kdec = kdur * gk_8
iolaps = 10

kampenv linenr iamp*gk_16, 0,.1,.03

;** xfund koct kris kdec ifna itotdur kgliss
;** xamp xform kband kdur iolaps ifnb kphs
;** -
a1 fof3 kampenv, kfund, kform1, gk_15, 0, kris, kdur, kdec, iolaps, ifna, 101, 3600, kphs, kgliss
a2 fof3 kampenv, kfund*gk_19, kform2, gk_15, 0, kris, kdur, kdec, iolaps, ifna2,101, 3600, kphs2, kgliss

vincr gaout1, a1 * (1 - gk_9) ;** left main output
vincr gaout2, a2 * (1 - gk_9) ;** right main output
vincr garev1, (a1 + a2) * gk_9 ;** reverb send
endin

;*********** Granular.sco ****************

24 Virtual Sound

f1 0 262144 -22 “c:\csound\icmc\voceGabEng.aif” 0 0 1
f2 0 524288 -22 “c:\csound\icmc\aiff\fm15 a(tema 2).aif” 0 0 1
f3 0 524288 -22 “c:\csound\icmc\aiff\fm15 m(arrich spett arm acute).aif” 0 0 1
f4 0 524288 -22 “c:\csound\icmc\aiff\fm15 t(arricchimento spettrale).aif” 0 0 1
f5 0 1048576 -22 “c:\csound\icmc\aiff\fm15 z(grave con arr spettr).aif” 0 0 1
f6 0 524288 -22 “c:\csound\icmc\aiff\fm15-f(iperarmonici).aif” 0 0 1
f7 0 131072 -22 “c:\csound\icmc\aiff\Gest9 (ottava gliss bassa).aif” 0 0 1
f8 0 524288 -22 “c:\csound\icmc\aiff\GestB (trilli glissati).aif” 0 0 1
f9 0 65536 -22 “c:\csound\icmc\aiff\GestD (batterie glissate).aif” 0 0 1
f10 0 65536 -22 “c:\csound\icmc\aiff\GestF (acciaccature).aif” 0 0 1
f11 0 524288 -22 “c:\csound\icmc\aiff\gyuto1 flang2 (pizzicati e raschiati).aif” 0 0 1
f12 0 262144 -22 “c:\csound\icmc\aiff\gyuto1 uuuamiu.aif” 0 0 1
f13 0 524288 -22 “c:\csound\icmc\aiff\Pigmei A(voce e flauto).aif” 0 0 1
f14 0 524288 -22 “c:\csound\icmc\aiff\Vid Nooo (E3).aif” 0 0 1
f15 0 262144 -22 “c:\csound\icmc\aiff\Vid uuuu(dissonanza).aif” 0 0 1
f16 0 262144 -22 “c:\csound\icmc\aiff\Clar PigmeiTema alto.aif” 0 0 1
f17 0 262144 -22 “c:\csound\icmc\aiff\Clar coppia temi paralleli3.aif” 0 0 1
f18 0 262144 -22 “c:\csound\icmc\aiff\Clar Tema2 retrogrado.aif” 0 0 1
f19 0 262144 -22 “c:\csound\icmc\aiff\Clar coppia temi veloce4.aif” 0 0 1
f20 0 131072 -22 “c:\csound\icmc\aiff\Clar coppia temi veloce6 cromatica2.aif” 0 0 1

f100 0 8192 5 .001 8192 1 ;** exponential curve for slider mapping
f101 0 8192 19 .5 1 270 1 ;** sigmoid curve

;** unis / third / fifth / Min7th / octave / oct+3rd / oct+5th / oct+7th / double oct
f102 0 32 -2 1 1.25 1.5 1.75 2 2.5 3 3.5 4

;** unis / -4 / 5 / -8 / 8 / -8 -4 / 8 +5 / -2oct / 2oct
f103 0 32 -2 1 .75 1.5 .5 2 .375 3 .25 4

;** major just scale
f104 0 32 -2 1 1.125 1.25 1.33333 1.5 1.66666 1.875 2 2

;** harmonic progression
f105 0 32 -2 1 1.125 1.25 1.375 1.5 1.625 1.75 1.875 2

;** frequency table
f151 0 32 -2 .5 1 .625 .75 .875 1 1.125 1.25 1.375 1.5 1.625 1.75 1.875 2

25Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

i100 0 3600
e

The orchestra is quite complex. So, we’ll work backwards, starting from the audio
output located at the bottom of instrument, up to controller’s inputs located at the top.

NOTE: We recommend that you analyze complex orchestras from output back to
input because, normally, the audio output consists of one, easy-to-locate variable (or two
in stereo, four in quadraphonic, etc.). Whereas the number of inputs usually is much
larger. In this case, there are 21 continuous controllers, plus inputs for the note-number
and the velocity of each note. Distinguishing at a glance the variables derived directly
from physical inputs in contrast to the intermediate variables is not an easy task. The
audio output is like the root of a tree, while input signals are like as branches or leaves
of the tree.

Orchestra consists of two instruments:
• instr 100, containing MIDI-control-related opcodes (slider8 e slider16), main

output and reverb line;
• instr 1, containing granular-synthesis-related code.

Instrument 100 is easy to read. Starting from the bottom toward the top (i.e. from the
root toward the branches), notice that the global audio variables contained in the left and
right channels (gaout1 and gaout2 variables) and the reverb signal (arev variable), are
routed to the stereo output. These variables are then zeroed (together with garev1 reverb
line) with the clear opcode. The arev signal is generated by the reverb2 opcode. garev1
(global reverb line) is connected to the reverb after being filtered by a low pass filter
(tonex). The filtering makes the reverb sound more pleasant when hearing it. The cutoff
frequency in this filter is adjustable with slider 10 (gk_10 global variable). Notice that
tonex opcode consists of a bank of first-order filters, serially connected. This filtering
produces a steeper cutoff curve which generates a warmer sound.

The arguments of slider8 and slider16 opcodes are split into several text lines which
makes it more legible. (Remember that ‘\’ character indicates a division of a single
CSound statement into multiple lines that is recognized as single statement). Our
orchestra has a total of 20 signals (adjusted by MIDI controllers). We used two opcodes.
The first contains 16 sliders. The second has 8 sliders. So, four sliders remain unused,
and can add additional variable parameters in the future by modifying the orchestra.

The following is a list of the global variables corresponding to parameters adjustable
by MIDI sliders:

26 Virtual Sound

gk_1 select the table containing audio samples (this orchestra can use different
samples at the same time);

gk_2 pitch offset, that can be selected by changing the index of a table containing
a series of frequential ratios;

gk_3 grain repeat speed, i.e. number of grains per second;
gk_4 phase scanning speed of current sample. This parameter allows to change the

duration of current sample without changing its pitch and vice-versa;
gk_5 end frequency of glissando of each grain (see fof2 and fof3 manual);
gk_6 total duration of each grain, scaled according to grain repeat speed;
gk_7 attack time of grains, scaled according to their total duration;
gk_8 decay time of grains, scaled according to their total duration;
gk_9 reverb send level;
gk_10 cutoff frequency of low-pass filter used by the reverb output;
gk_11 random amount of grain frequency;
gk_12 random amount of grain duration;
gk_13 left/right channel phase difference;
gk_14 random amount of starting grain phase;
gk_15 octaviation factor (see fof2 and fof3 manual);
gk_16 main volume control;
gk_17 harmonic tuning table number;
gk_18 amount of random changes in harmonic tuning table;
gk_19 left/right deviation of grain repetition speed;
gk_20 stating phase offset of grains. If the phase scanning speed of current sample

is set to zero (gk_4 slider), this parameter allow to ‘scrub’ sampled sound
manually.

gk_21 random amount of grain starting time;
gk_22 not assigned;
gk_23 not assigned;
gk_24 not assigned;

Now, let’s read instr 1, starting from the bottom.

The three lines of code containing the vincr opcode assign left/right channels and the
reverb line to the corresponding global variables (gaout1,gaout2,grev1) which will be
used as arguments in the main audio output located in instr 100.

Notice that reverb line (garev1) is obtained by mixing the left and right channels, and
by multiplying the result by the current value of slider 9 (gk_9) or adjusting wet/dry
ratio. Slider 9 also affects the level of direct signals (a1 and a2) placed in the global
variables gaout1 and gaout2.

27Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

a1 and a2 variables are generated by fof3 opcodes. These are the heart of the granular
synthesis engine. There are two calls to fof3 which process a stereo file using the
granular synthesis technique.

Even a mono sample can be granulated using two fof3 modules with slightly different
parameters. This produces a stereo effect.

fof3 opcode is derived by fof2 which is derived by fof.

Initially, fof was not designed for granular synthesis, but for vocal synthesis using
formants derived from IRCAM’s Chant program (Xavier Rodet et al.).

Thanks to the internal structure, fof, fof2 and fof3 can be used in granular synthesis,
as well. Compared with fof and fof2, fof3 can handle 16-bit integer samples stored into
a CSound table (whereas fof and fof2 only handle 32-bit floating-point samples). For
this reason, fof3 is more efficient and wastes less memory. It stores double the amount
of samples with the same amount of RAM. Furthermore, fof3 uses linear interpolation to
read samples, while fof and fof2 don’t. So, the audio quality is much better.

Let’s analyze the input arguments of the first line of code for the fof3 opcode
(arguments on the second line are practically the same):

a1 fof3kampenv, kfund, kform, gk_15, 0, kris, kdur, kdec, iolaps, ifna, 101, 3600, kphs, kgliss

kampenv Amplitude envelope. In this case, signal is generated by the previous line of
the linenr opcode. In this instrument the amplitude varies according to the
note-on velocity received by DirectCsound from the MIDI port (see the line
containing ampmidi opcode).

kfund When using fof3 in granular synthesis (instead of vocal synthesis), this
parameter indicates the grain repeating speed. During processing, kfund is
variable and enables control over the temporal distance between grains. If
kfund doesn’t vary, or varies slowly and smoothly, we refer to the process as
synchronous granular synthesis. If kfund varies chaotically, we refer to it as
asynchronous granular synthesis. In this orchestra, the base speed of grain
repetitions is adjusted by slider 3 (gk_3 variable). The random variations in
this base speed are adjusted with slider 21 (gk_21 variable).

kform When fof3 is used for granular synthesis instead of vocal synthesis, this
parameter contains the pitch-transposition of the current grain. The value of
kform is sampled at the start of grain and remains constant for the duration
of the entire grain - even if kform varies in the meantime. The concept is the
same for the initialization parameters which are ‘sampled’ at the start of a
note and remain constant for entire note duration. The only difference is that,

28 Virtual Sound

in this case, kform remains constant only inside a single grain. So, if it varies
during a note, the next grain will get a new frequency value, but the current
grain continues to use the old value. kform is expressed in cps which
indicates the number of times per second the entire table containing the audio
samples is read. It should be clear that assigning a frequency value expressed
in cps to this parameter is correct only when a single cycle of the sound
waveform is stored into the table (for example, a sinusoid). When the table
contains a complex sample, it is better to refer to the period of each cycle.
(Period is the inverse of frequency.) In our example, the period corresponds
to the duration of sampled sound contained in the table. Suppose to have a
sample with a length of one second that contains a tone of 440 cps. If we
want to play this sampling at 880 cps, we have to read the table twice fast by
assigning 2 for a value of kform. If we want to play it at 220 cps, we have to
assign 0.5 etc. If our sample has a duration of 1.5 seconds and we want to
produce a tone of 440 cps, (the sampling frequency of the original) we have
to set the period = 1.5 seconds. But since this value must be expressed in cps,
(a frequency unit, not a duration unit) we have to assign the inverse of that
period (1/1.5 = 0.6666). If we want to transpose up an octave, kform must be
set to 1/(1.5/2) = 2/1.5 = 1.3333 (i.e. the inverse of half period, that is the
double of frequency) and so on.
So it is important to take into account the total duration of the sample
contained in the table, as well as, its original frequency (pitch) and original
sampling frequency. We pay particular attention to sounds recorded at
sampling frequencies that are different from the orchestra’s sampling
frequency. In our orchestra, the pitch transposition of grains can be adjusted
by slider 2 (gk_2 variable) and by a MIDI note number (cpsmidi opcode)
while the random amounts of pitch variation of grains can be adjusted by
slider 11 and 18 (gk_11 and gk_18 variables). Slider 18 allows a table with
micro-tuning ratios to control the frequency of grains randomly. Each grain
will assume a frequency value that corresponds to a ratio contained in the
current micro-tuning scale.

gk_15 in vocal synthesis, this argument contains octaviation index which attenuates
the level of odd-numbered grains. In vocal synthesis, this index produces an
octave-lowering effect. In synchronous granular synthesis, it produces a
rhythmic effect when this index is greater than zero. In our orchestra this
parameter can be controlled by slider 15.

0 This argument is not used in the granular synthesis of this orchestra. In vocal
synthesis, it expresses the bandwidth of the formant in Hertz.

29Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

kris Attack time of the trapezoidal envelope of grains. It can be varied in different
grains. In our orchestra attack time can be adjusted by slider 7 (gk_7
variable).

kdur Total duration of each grain. It can be varied in different grains. In our
orchestra attack time can be adjusted by slider 6 (gk_6 variable). Also, it is
possible to adjust random variation of grain duration with slider 12 (gk_12
variable).

kdec Decay time of the trapezoidal envelope of grains. It can be varied in different
grains. In our orchestra decay time can be adjusted by slider 8 (gk_8
variable).

iolaps Number of overlapping grains. If the time duration of the grains exceeds the
time interval between grains, the grains will overlap. This parameter defines
the maximum number of overlaps. If the number of overlaps surpass this
number, CSound crashes. In this orchestra maximum number of overlaps is
set to 10. It is recommended that number to this parameter is not too high.
High numbers waste of processing time and degrade real-time performance.

ifna In granular synthesis this parameter must be filled with the number of the
table containing the sampled sound.
In fof and fof2, this table is, usually, filled using GEN01. In fof3 (as in the
previous example), it is filled using GEN22. (It is identical to GEN01 except
that it fills table with 16-bit samples). In our orchestra it is possible to select
a different table for each note by varying slider 1 value (gk_1 variable).

101 Number of the table containing the shape of the attack and decay segment. It
is usually a straight-line segment or a sigmoid. The sigmoid can be obtained
by using a cycle of a positive sinusoid shifted 90 degrees out of phase with
the first and last quarter of cycle are cut off (by using GEN19).

3600 Maximum note duration (not grain duration). In this orchestra is set to 3600
seconds.

kphs This parameter tracks the phase of the table storing the sampled sound. It
start with zero and ends with 1. These numbers refer to the start and the end
of table. To accomplish this task, normally the phasor opcode is used, which
generates the phase for a table in which period (i.e. the inverse of frequency)
coincides with the duration of table scanning.
By varying the frequency of phasor, we obtain different reading speeds. So,
it is possible to stretching time without affecting the pitch of a sampled
sound. If the frequency of phasor is set to zero, that is if the kphs parameter
remains constant, the sampled sound will ‘freeze’. In our orchestra, the
phasor frequency (i.e. table scanning speed) can be adjusted with slider 3
(gk_3 variable). It is also possible to set an offset defining the initial point of

30 Virtual Sound

table scanning. By varying such parameter and setting phasor frequency to
zero, it is possible to ‘scrub’ manually by changing the corresponding slider
value. In our orchestra this value can be adjusted by slider 20 (gk_20
variable).

kgliss - In fof2 and fof3, a glissando can take place in each grain. This parameter
indicates terminal frequency of the transposition. It is expressed as a scale
factor. Consequently, assigning 1 to such parameter leaving the frequency of
grain unchanged; assigning 2 doubles the frequency at the end of the
glissando (the transposition moves up an octave); assigning 0.5 halves the
last frequency (i.e. it transposes down an octave down). If the grain’s
duration is very short, the glissando will sound like a timbral effect, or a sort
of detuning. In our orchestra, this parameter can be adjusted with slider 5
(gk_5 variable).

ampenv signal, contains the amplitude envelope which is generated by linenr. The
absolute amplitude can be adjusted with slider 16 (gk_16), the main volume control.
iolaps is set to 10. kris and kdec (grain attack and decay) are calculated as fractions of
kdur these fractions can be adjusted by slider 7 and 8 (gk_7 and gk_8).

Grain duration kdur is controlled by slider 6 (gk_6) and its the random variation can
be adjusted by slider 12 (gk_12).

The frequency of kgliss (grain glissando) can be adjusted with slider 5 (gk_5).
The table that contains the sampled sound is scanned separately for the left and right

channels (kphs and kphs2) with the two lines of code that call the phasor opcode.
The phasor input argument controls the speed of sampled sound scan. This

argument (kphsrate) can be adjusted with slider 4 (gk_4). When kphsrate defaults to
the value 0, sampled sound scanning is stops on a single point, and all grains are read
from only one point of sampled sound table. It is possible to modify the scanning
point manually, in this example, with means of slider 20 (gk_20). This offsets the
current point in the scanning. It is, also, possible to modify the phase-difference
between the left and right channel by adjusting slider 13 (gk_13). Offsets in the grain
reading points of sampled sound table can be implemented using random jumps. The
random offset (krndphs) is generated by linrand opcode and the random influence on
sampled sound reads can be adjusted with slider 14 (gk_14). Actually, phasor
generates a signal moving from zero to one like the numbers that represent the phase
at the start and end of the table containing the sampled sound. Remember the table
length must be a power of two, but the number of table entries needed to store a
sampled sound is rarely a power of two. So, the number of sound samples and the
total number of elements of the table are usually different. (The table length will be
greater or equal to the number of sound samples). For this reason, the nsamp()

31Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

function is used. This function returns the number of samples actually read from
sample file.

The last part of table remains unused, and is filled with zeroes. If the entire table is
scanned, we would hear sound only in the first part of table. For the remaining portion
we wouldn’t hear anything. To prevent this, the phase of table must not rise all the way
to 1, but only to the last which holds a sound sample. (i.e. a number between 0.5 is half
the table.) The scale factor ilnDmem represents the ratio between the sampled sound’s
length and the table’s length.

In our example phasor operates at k-rate, but the kphs and kphs2 variables must
contain values at the initialization stage so that fof3 can legally call those variables. For
this reason, the two variables are initialized with zero values. The phasor frequency
(kphsrate) is obtained by the multiplication of the output of slider 4 with isrDdur which
is a scaling factor.

The frequency of granule repetitions (kfund) is controlled with slider 3 (gk_3) in
combinations with a random offset (generated by trirand opcode). The value of this offset
can be adjusted with slider 21. When the value is not zero, rhythm of the grains will vary.

The frequency of each grain is obtained by two variables kform1 (left channel) and
kform2 (right channel).

Frequency values are influenced by several factors: MIDI note number, slider 2 (gk_2,
that initiates a transposition), random generators which vary the frequency of each grain
which is adjustable with slider 11 (gk_11), and random generators that choose an interval
ratio stored in a table storing a scale which is adjustable with slider 18 (gk_18).

imemlen, ilen, ilnDmem, ifsr, isrDmem and isrDdur are re-scaling factors which affect
various parameters. We avoid to go into mathematical details in order to don’t annoy the
reader, who can study their purpose for himself in any case.

ifna and ifna2 are numbers of the tables containing the sampled sound (left and right
channel). These numbers can be changed with slider 1 (gk_1).

iamp used to adjust the amplitude of notes, depending by MIDI note velocity.

ifmidi affects the grain frequency (as well as other factors). It is dependent by MIDI
note number.

At the beginning of score several tables (1 to 20) are filled with sampled sounds using
GEN22.

Table 100 contains a segment of exponential curve and is accessed with the slider16
opcode. It is used to create a more natural response when adjusting some sliders.

32 Virtual Sound

Table 101 contains a sigmoid curve. Its purpose is to shape the attack and decay
segment of each grain. The sigmoid curve is created by shifting a positive sinusoid 180
degrees out of phase 180 and then removing the first and the last quarter of period.

Tables 102, 103, 104 and 105 contain frequency ratios for micro-tuning scales.
Table 151 contains transposition factors.
At last, instrument 100 is activated for 3600 seconds, in order to allow an hour of

Csound real-time performance.

At this point we end the lecture section regarding DirectCsound real-time examples.
How do we control all MIDI parameters in real-time? We could connect a MIDI fader

box (several such mixers are available commercially) to the MIDI input port of the
computer to provide the user with a number of physical sliders (potentiometers) which
transmit MIDI control-change messages as they are moved (and are then recognized by
the orchestra). Normally, MIDI fader boxes or MIDI mixers have only 16 sliders while
the adjustable parameters of orchestras are more numerous. Our orchestra, for example,
has 21 parameters.

An alternative to hardware devices is VMCI is a program designed to be used in
conjunction with DirectCsound under Windows. This is more convenient in many
aspects, as we will see in next session.

33Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

4. VMCI (VIRTUAL MIDI CONTROL INTERFACE)

VMCI GUI interface can send most kinds of MIDI messages (all VOICE messages:
note-on, note-off, poly after-touch and channel after-touch, control-change, program-
change and pitch-bend) to any MIDI port installed on the computer. VMCI is totally
configurable and gives the user total control over MIDI message definitions. VMCI can
be used in place of a MIDI keyboard or any external MIDI control device. It is possible
to control DirectCsound via MIDI even without having any MIDI interface card installed
on the computer. This program was specifically designed to control DirectCsound, but it
can be used to control any MIDI instrument, hardware and software, as well.

4.1 VMCI modes.

There are two versions of VMCI:

1. VMCI
2. VMCI Plus (commercial version with the unique hyper-vectorial synthesis and

other enhanced features).
In this lecture we only deal with the first version that has two modes:

• Lite mode
• Pro mode

LITE mode is freeware.
PRO mode is shareware. This mode can be only activated with a ‘magic’ code given

to persons who pay for the software.

In order to control DirectCsound with VMCI, it is necessary to install «Hubi’s
LoopBack device», a virtual MIDI program which provides MIDI ports without any
hardware MIDI interface. The «Hubi’s LoopBack» package is freeware. It is possible to
connect several devices to the same MIDI port. Thus, it is possible to control
DirectCsound both with VMCI and a hardware master-keyboard at the same time.

VMCI Pro provides the following tools:

• four 7-bit slider panels, up a total of 256 configurable sliders that can send any
MIDI control-change message;

• two 14-bit sliders panels, up a total of 64 configurable sliders that can send
messages of with a double resolution;

34 Virtual Sound

• two virtual joystick panels, up a total of 16 configurable joystick areas, each one
of these controlling two parameters at a time;

• a virtual keyboard panel capable to handle a total 960 different MIDI messages of
any kind, according to user configuration. Any one of these message can be
associated to a key of the alphanumeric keyboard;

• CSound editing and starting buttons, which makes Csound related operations easier;
• copy board, that allow to copy and paste parameter values from VMCI to a

CSound orchestra o score.

4.2 The ACTIVATION BAR

When starting VMCI, the activation bar appears:

The activation bar is the main window and has the following purposes:
• Open and save setup files (with .stp extension). Setup files contain most settings

made during the working sessions. The main settings are slider and joysticks
positions (see below), text labels for every parameters and virtual keyboard
configuration.

• Show and hide panels (containing sliders, joysticks, and virtual keyboard), by
clicking the corresponding check-boxes.

• Open the «MIDI Setup» dialog-box, that allows to select MIDI out port (in «Plus»
version it is possible to activate the MIDI in port too).

• Show and hide panel toolbars in order to gain more space and to enlarge vertical
slider length.

• Enable automatic sending of note-on and note-off messages each time a slider is
moved, in order to initialize a «global instrument» (i.e. a Csound instrument which
handles global variables used by other instruments).

35Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

FIG.1 Activation bar

• Enable/disable visualization of numeric values of parameters when they change.
Since updating visualization subtracts a lot of CPU processing time, this option is
useful to enhance Csound realtime performance by freeing processing resources.

• Visualize and clearing «Copy Board» that contains all current slider positions.
• Csound related buttons («Csound settings», «Run Csound», «Edit orc» and «Edit

sco» that allow to run up to two instances of Csound at the same time, and to edit
corresponding orc/sco pairs. «Csound Settings» button allows to setup all
parameter corresponding to Csound calling inside VMCI).

4.3 Slider-panels

Slider-panels contain a group of scroll-bars (the number of available sliders is
different in LITE and in PRO mode). By moving these scroll-bars MIDI control-change
messages are sent to the MIDI out port. Each panel emulates the functionality of a MIDI
fader box or a MIDI mixer. Two different resolutions are possible in sending parameters:
7-bit messages covering a range of 0 to 127, and 14-bit messages (consisting of a pair of
7-bit messages) covering a range of 0 to 16383.

36 Virtual Sound

FIG.2 7-bit Slider Panel (horizontal)

VMCI Pro mode allows to use up to six slider panels at the same time: two horizontal 7-bit
slider panels (fig.2), two vertical 7-bit slider panels (fig.3) and two 14-bit slider panels (fig.4).

Each 7-bit panel contains a total of 64 sliders. The horizontal sliders can only display
up to 32 slider at a time whereas the vertical sliders can display all 64 sliders. On the
other hand, the horizontal ones display all the slider comments at the same time.

37Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

FIG.3 7-bit Slider Panel (vertical)

FIG.4 14-bit Slider Panel

When dragging a slider with the mouse, a stream of MIDI control-change messages
are sent, and the following information is displayed in accordance with the slider
position:

• control-change message number, corresponding to its actual configuration (that
can be modified by the user);

• control-change message data value sent to the MIDI out port;
• re-scaled data, as it is interpreted by CSound (default re-scaling range is 0 to 1, and

can be reconfigured by the user). Such value is useful to monitor what actually
happens in the corresponding CSound instrument;

• slider comment (in horizontal slider panel the comments of all sliders are
visualized at the same time), that can be defined by user for each slider.

VMCI allows to save all current slider positions of all panels in the setup file, and to
send all MIDI messages corresponding to the present state of a panel by pressing «Send
current CC positions» button. This restores the identical sonic configuration in a
different CSound session, containing many parameters. This feature is normally not
present in hardware MIDI fader boxes.

38 Virtual Sound

4.4 Virtual joystick panels

VMCI includes two panels, each one contains eight squares which emulate an analog
joystick. By dragging a mouse over these areas, two different MIDI control-change
messages are sent simultaneously. The first corresponds to the horizontal position of the
mouse. The second corresponds to the vertical position. So, it is possible to control two
parameters with a single mouse movement. An action which is impossible with sliders
(fig.5).

FIG.5 Virtual Joystick Panel

39Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

4.5 Virtual keyboard panel

Virtual keyboard panel (fig.6) sends any kind of MIDI VOICE messages, not only
note-on and note-off messages.

FIG.6 pannello della tastiera

Each button appears as a piano-key and can generate a note-on/off message, as well
as program-change, pitch-bend, control-change or after-touch. Each key is totally
configurable by the user and can send any VOICE message the user assigns to it.
Furthermore, it is possible to assign each key of the alphanumeric keyboard to one of the
piano-like buttons of the panel, making it possible to play the computer keyboard as it

40 Virtual Sound

was a piano. Up to 959 MIDI messages can be assigned to the piano-like keys and
current user configuration can be saved in the .stp file. Also, it is possible to add (or
subtract) an offset to all data bytes in the current configuration by means of the two
sliders located at the right of the piano-like buttons.

(Translated from the Italian by the author)

41Gabriel Maldonado - DirectCsound and VCMI: The Paradigm of Interactivity

Extract from "Virtual Sound" by R. Bianchini - A. Cipriani
Copyright © 2008 - 1998 ConTempoNet s.a.s., Rome, Italy - All rights reserved

