
SOUND SYNTHESIS BY ITERATED NONLINEAR

FUNCTIONS

by Agostino Di Scipio

1. INTRODUCTION

The iteration of nonlinear functions is part of the branch of mathematics called “chaos
theory”. In 1991, I set out to investigate the possibility of using it in the field of digital
sound synthesis. It was soon clear that the approach was to open up a world of unique
sounds of its own, many with turbulent and noisy components (aperiodicity), and some
with more familiar harmonic sound spectra (periodicity).

This present overview is a survey of iterated function synthesis based on Csound
examples that the reader can analyze and modify for him/herself (readers willing to go into
the theoretical and mathematical details are referred to the references). If you try to extend
the examples provided here, it will be evident that even slight changes in the synthesis
parameters give rise to dramatic differences in the sound, such that often the audible result
can hardly be foreseen at the outset. Which suggests that the best way to deal with iterated
nonlinear functions is with a kind of empirical, explorative and open-ended attitude.
Indeed, the sound synthesis approach described here is a “non-standard” approach. It is not
grounded on any model of scientifically proven and verified acoustical relevance.

Rather, it represents a somewhat arbitrary, procedural model which is properly
understood as an interesting way of creating sequences of numbers such that, by sending
these numbers to a digital-to-analog converter, sounds may eventually emerge having
properties that are useful for music and sound-design.

2. GENERAL DESCRIPTION

To iterate a function is to apply some transformation, f, to a datum, x(0), and to apply
the transformation again to the first resulting value, and then again to the second
resulting value, ... and so on, n times again:

x(n) = f (x(n-1))

We call x(n) the nth “iterate” obtained by applying f to x(0). If f is nonlinear (e.g. a
sine, a line broken in several segments, or any high-order polynomial) the process will
determine different sequences of results. The particular sequence is dependent on the
initial datum, x(0) and on the parameters of the function f. In most cases, it is impossible
to predict the output series of values.

To translate this general procedure into a digital sound synthesis method, we can
follow these steps:

a - initialize x(0) and f’ parameters
b - take the nth iterate, x(n), and save it as the current digital sample
c - update x(0) and f’ parameters
d - repeat b and c as many times as the samples required.

In other words, the output stream of samples is the series of the nth iterations of f upon
changing values in x(0) and f. If we call i the sample order index (discrete time index),
the synthesis technique can be represented as a simple recursive formula:

x(n,i) = f(i) (x(n-1,i))

This model framework represents a class of synthesis techniques rather than a single
technique. The aspect that is peculiar to all particular cases in the class is the fact that the
stream of samples is calculated as the sequence of the nth iterations of some function. To
implement a particular technique, we must select a particular nonlinear function and run
a given number of iterations.

As an example, think of the technique known as waveshaping (often called nonlinear
distortion in Europe). It involves the transformation of an input signal by a waveshaping
function (usually a Chebychev polynomial, but can be a sine wave or something else). If
the operation is repeated, feeding the output sample back into the waveshaper, we get a
special case of iterated function synthesis.

Obviously, every nonlinear function determines a peculiar process of its own.
However, in the literature on theory of deterministic chaos, many have stressed that the
numerical sequences obtained with iterated functions are more heavily dependent on the
iteration itself, rather than on the function. It is the iteration that allows coherent or
chaotic patterns to emerge, not the nonlinear function being iterated.

3. IMPLEMENTATION

The Csound examples illustrated below illustrate the following iteration:

x(n) = sin (r*x(n-1))

i.e. the mapping of the sine function onto itself in the interval [-1,1]. The parameters
in play include: r (or control parameter) and x(0) (initial datum). As a general rule, the
control parameter ranges from 0 to 4, but as a matter of fact only values between 3.14

2 Virtual Sound

and 4 are of practical relevance for us (smaller values cause the process to move towards
a “fixed-point attractor”, yielding a straight line as a result). The initial datum can be
assigned any value from the interval [-1,1] (but in theory it can be any real number).

What is the effect of the parameters? The control parameter, r, determines the overall
timbral quality in the output sound. On the other hand, x(0) determines the particular
series of output sample values, and is somewhat akin to the seed of a random numbers
generator. Indeed, you can think of this synthesis process as a generator of “structured
noise” that we can control in its internal process. The achievable results, anyway, are far
more varied and rich than the results obtained with white noise generators (such as
Csound’s rand and randh opcodes).

To create some sound, either x(0) or r (or both) have to move across their value range.
This can be done by driving them with an envelope generator or with an oscillator. By
varying x(0) during the note and keeping r fixed, we obtain several sounds (several
different output signals) of very similar timbral properties. The reverse is also true. By
varying r and keeping x(0) constant, we obtain different sounds starting from identical
initial data. By varying both r and x(0), we obtain sounds with highly dynamic
properties.

Another crucial parameter is the particular number of iterations utilized as the digital
sample. In general, the higher is the iterate order, n, and the more chaotic and turbulent
the output sound. Too high a number of iterations would generate something very close
to white noise, but internally articulated and not as static. Too low a number of iterations
would probably generate some silence.

Now, what would be a good way of changing r and/or x(0) in time? If we use ramps,
i.e. series of linearly increasing or decreasing values, we obtain acoustical turbulences,
sometime having a wind-like, or even water-like quality to the ear. If you look at the
waveform of such sounds, you will notice phase- or frequency-modulation effects, which
are sometimes heard as distinct gestures separated by silent pauses (the pauses are
chunks of direct current signal, with either a positive or negative offset). That happens
especially when a small number of iterations are used, and when r is close to 3.14. These
strange rumbles are like the “natural state” of the mathematical model. By simply
ramping either r or x(0), we are “visiting” the whole field of possibilities implicit to the
iterated function. Some of the Csound examples below, Ex1.sco through Ex6.sco (all to
play with the IFS1.orc orchestra), illustrate this basic behavior. They show the
dependency of the results on the two parameters. They also show that the timbral
characteristics in the output sound are dependent on the note duration as well. Different
durations imply differently quantized iterated processes, and therefore a different
resultant bandwidth.

The remaining examples, Ex7.sco through Ex10.sco, illustrate the possibility of
controlling x(0) by means of oscillating signals. This approach forces the overall process

3Agostino Di Scipio - Sound Synthesis by Iterated Nonlinear Functions

towards more regular, periodic patterns, either in the infra-audible (rhythm) or the
audible (frequency) range. These examples may eventually reveal that r can be
considered a bit like the modulation index of FM synthesis. Indeed, in theory it would
be possible to explain “feedback FM” (the output of the modulation is fed back into the
system to modulate itself) as a kind of iterated nonlinear function synthesis.

The IFS1.orc orchestra includes three instruments, each representing a different
implementation (see comments in the orchestra code). It should be used in conjunction
with scores Ex1.sco through Ex8.sco. The IFS2 orchestra introduces some slight
modifications in instr 2 (mathematical details), and should be used in conjunction with
the last two score examples, Ex9.sco and Ex10.sco.

; IFS1.orc
; sound synthesis by functional iterations
; sin(r*x) [sine map]
;
; the basic technique is instr 3
; instr 1 and 2 offer more refined controls:
; by exploiting the deterministic aspect of the process
; they also introduce some periodicity in the signal
;
; -

sr = 22050
kr = 22050
ksmps= 1
nchnls = 2

; why sr = kr?
; Everything happens at audio rate (something even at “superaudio” rate, i.e. sr*p7).
; However, some opcodes can only work at control rate (e.g. the program control
; statements and value converters).

instr 1

; p4 = initial value for the control parameter (r)
; p5 = final value for the control parameter (r)
; p6 = initial value for x(0)
; p7 = iterate number
; p8 = stereo location (0,1)
; p9 = increment step for x(0)

4 Virtual Sound

; p10 = global amplitude

ar init p4 ; initialize control parameter
irstp init (p5-p4)/(sr*p3) ; initialize increment step for control parameter
ixstp init p9 ; initialize increment step for x(0)
asam init 0 ; initialize output sample variable
kcnt init 0 ; initialize counter
ax init frac(p6) ; initialize the initial datum, x(0)
kaxnew init frac(p6) ; temporary storage variable

label:
kcnt = kcnt+1 ; update counter
ax = sin(ar*ax) ; iteration x=sin(rx)

if kcnt < p7 kgoto label ; iterate loop

asam = ax ; sample is the p7-th iterate
kcnt = 0 ; reset counter
ar = ar + irstp ; increment control parameter
kaxnew = frac(kaxnew+ixstp) ; update x(0), must be a k-variable, due to frac
ax = kaxnew ; reset the initial datum, x(0)

asig = p10*asam ; amplitude scaling
asig linen asig, .05, p3, .05 ; fade in, fade out, to avoid clicks

outs asig*p8, asig*(1-p8) ; stereo panning

endin

instr 2

; same pfields as above

ar init p4 ; initialize control parameter
irstp init (p5-p4)/(sr*p3) ; initialize increment step for control parameter
asam init 0 ; initialize output sample variable
kcnt init 0 ; initialize counter

aph oscili 1,p9,1 ; oscili determines the initial datum for next iteration
ax = (p6*2)*((aph+1)/2) ; update initial datum, x(0)

5Agostino Di Scipio - Sound Synthesis by Iterated Nonlinear Functions

label:
kcnt = kcnt+1 ; increment counter
ax = sin(ar*ax) ; iteration x=sin(rx)

if kcnt < p7 kgoto label ; iterate loop

asam = ax ; sample is the p7-th iterate
kcnt = 0 ; reset counter
ar = ar + irstp ; increment control parameter

asig = p10*asam ; amplitude scaling
asig linen asig, .05, p3, .05 ; fade in, fade out, to avoid clicks

outs asig*p8, asig*(1-p8) ; stereo panning

endin

instr 3

; same pfields as above, but p9 void

ar init p4 ; initialize control parameter
irstp init (p5-p4)/(sr*p3) ; initialize increment step for control parameter
ixstp init (1-p6)/(sr*p3) ; initialize increment step for x(0)
asam init 0 ; initialize output sample variable
kcnt init 0 ; initialize counter
ax init p6 ; initialize initi value
axnew init p6 ; temporary storage variable

label:
kcnt = kcnt+1 ; increment counter
ax = sin(ar*ax) ; iteration x=sin(rx)

if kcnt < p7 kgoto label ; iterate loop

asam = ax ; sample is the p7-th iterate
kcnt = 0 ; reset counter
ar = ar + irstp ; increment control parameter
axnew = axnew+ixstp
ax = axnew

6 Virtual Sound

asig = p10*asam ; amplitude scaling
asig linen asig, .05, p3, .05 ; fade in, fade out, to avoid clicks

outs asig*p8, asig*(1-p8) ; stereo panning

endin

; SCORES FOR IFS1.ORC
;
; p4 = initial value for the control parameter (r)
; p5 = final value for the control parameter (r)
; p6 = initial value for x(0)
; p7 = iterate number
; p8 = stereo location (0,1)
; p9 = increment step for x(0)
; p10 = global amplitude
;
; EX1.SCO
; dependency of the output signal on the initial datum x(0)
; other parameters being constant (dur, r, iter)
;
; start dur rstart rend x(0) iter stereo xstep ampl
i1 0 1 4 3.9 .1 10 .5 0 30000
i1 2 1 4 3.9 .11 10 .5 0 30000
i1 4 1 4 3.9 .2 10 .5 0 30000
i1 6 1 4 3.9 .3 10 .5 0 30000
i1 8 1 4 3.9 .4 10 .5 0 30000
i1 10 1 4 3.9 .6 10 .5 0 30000
i1 12 1 4 3.9 .8 10 .5 0 30000
i1 14 1 4 3.9 .9 10 .5 0 30000
s
; EX2.SCO
; two simultaneous processes start from nearly identical initial data
; and diverge in time
;
; start dur rstart rend x(0) iter stereo xstep ampl
i1 0 10 4 3 .3 10 0 0 30000
i1 0 10 4 3 .305 10 1 0 30000
s
; EX3.SCO

7Agostino Di Scipio - Sound Synthesis by Iterated Nonlinear Functions

; dependency of the bandwidth on r
; all other parameters being constant (dur, x, iter)
;
; start dur rstart rend x(0) iter stereo xstep ampl
i3 0 1 2.5 2.5 .3 10 .5 0 30000
i3 2 1 2.6 2.6 .3 10 .5 0 30000
i3 4 1 2.7 2.7 .3 10 .5 0 30000
i3 6 1 2.8 2.8 .3 10 .5 0 30000
i3 8 1 2.9 2.9 .3 10 .5 0 30000
i3 10 1 3.0 3.0 .3 10 .5 0 30000
i3 12 1 3.1 3.1 .3 10 .5 0 30000
i3 14 1 3.2 3,2 .3 10 .5 0 30000
i3 16 1 3.3 3,3 .3 10 .5 0 30000
i3 18 1 3.4 3.4 .3 10 .5 0 30000
i3 20 1 3.5 3.5 .3 10 .5 0 30000
i3 22 1 3.6 3.6 .3 10 .5 0 30000
i3 24 1 3.7 3.7 .3 10 .5 0 30000
i3 26 1 3.8 3.8 .3 10 .5 0 30000
i3 28 1 3.9 3.9 .3 10 .5 0 30000
i3 30 1 4.0 4.0 .3 10 .5 0 30000
s
; EX4.SCO
; same as EX3.SCO, but with different x(0)
;
; start dur rstart rend x(0) iter stereo xstep ampl
i3 0 1 2.5 2.5 .1 10 .5 0 30000
i3 2 1 2.6 30000
i3 4 1 2.7 30000
i3 6 1 2.8 30000
i3 8 1 2.9 30000
i3 10 1 3.0 30000
i3 12 1 3.1 30000
i3 14 1 3.2 30000
i3 16 1 3.3 30000
i3 18 1 3.4 30000
i3 20 1 3.5 30000
i3 22 1 3.6 30000
i3 24 1 3.7 30000
i3 26 1 3.7 30000

8 Virtual Sound

i3 28 1 3.9 30000
i3 30 1 4.0 30000
s
; EX5.SCO
; dependency of the bandwidth on duration
; (i.e. on the number of samples off the control parameter interval)
;
; start dur rstart rend x(0) iter stereo xstep ampl
i3 0 1 3.5 3 .1 10 .5 0 30000
i3 2 2 3.5 3 .1 10 .5 0 30000
i3 5 3 3.5 3 .1 10 .5 0 30000
i3 9 4 3.5 3 .1 10 .5 0 30000
i3 14 5 3.5 3 .1 10 .5 0 30000
i3 20 6 3.5 3 .1 10 .5 0 30000
i3 27 7 3.5 3 .1 10 .5 0 30000
i3 35 8 3.5 3 .1 10 .5 0 30000
s
; EX6.SCO
; dependency of the output signal on the number of iterates
; all other parameters being constant
;
; start dur rstart rend x(0) iter stereo xstep ampl
i3 0 1 3.5 3 .1 12 .5 0 30000
i3 2 1 3.5 3 .1 11 .5 0 30000
i3 4 1 3.5 3 .1 10 .5 0 30000
i3 6 1 3.5 3 .1 9 .5 0 30000
i3 8 1 3.5 3 .1 8 .5 0 30000
i3 10 1 3.5 3 .1 7 .5 0 30000
i3 12 1 3.5 3 .1 6 .5 0 30000
i3 14 1 3.5 3 .1 5 .5 0 30000
i3 16 1 3.5 3 .1 4 .5 0 30000
s
; EX7.SCO
; periodicity introduced by cycling x(0) with a sine wave
;
f 1 0 512 10 1
;
; with constant r

9Agostino Di Scipio - Sound Synthesis by Iterated Nonlinear Functions

; start dur rstart rend x(0) iter stereo xfreq ampl
i2 0 4 3.2 3.2 .1 6 .5 2 30000
i2 + . 3.2 3.2 .1 6 .5 4 30000
i2 + . 3.2 3.2 .1 6 .5 8 30000
i. + 16 30000
i0 16 2
s
; with decreasing r (spectrum goes from complex to simple)
i2 0 1 3.2 1 .1 6 .5 32 30000
i. + 64 .
i. + 128 .
i. + 256 .
i. + 512 .
s
i2 0 .25 3.2 1 .1 6 .5 755 30000
i. + 713 .
i. + 663 .
i. + 626 .
i. + 591 .
i. + 558 .
i. + 527 .
i. + 498 .
i. + 470 .
i. + 444 .
i. + 419 .
i. + 400 .
s
; EX8.SCO
; compare the periodicity achieved by instr 1
; with that achieved by instr 2
;
f 1 0 512 10 1
;
i1 0 10 3.2 2 .1 8 .2 .0008 30000
i1 0 10 3.2 2 .21 8 .8 .000803 30000
i2 10 10 3.2 2 .1 8 .2 20 30000
i2 10 10 3.2 2 .21 8 .8 20.01 30000
e

10 Virtual Sound

; IFS2.orc
; synthesis of sound by functional iterations
; sine map [x=sin(rx)]
;

sr = 22050
kr = 22050
ksmps= 1
nchnls = 2

instr 2

; modification of IFS1’s instr2
; to study optimal variations in x(0) [-3.14,+3.14], not [-1,1]

asam init 0
kcnt init 0
ifrq init 1/p3

kar oscili p4-p5, ifrq, p12, 0 ; envelope for the control parameter
kar = kar + p5
ampx line p11, p3, p6 ; envelope for x(0)
aph oscili ampx, p9, 1, 0 ; cycling of x(0)
ax = (aph+1)/2 ; update x(0)

label:
kcnt = kcnt+1 ; increment counter
ax = sin(kar*ax) ; iteration

if kcnt < p7 kgoto label ; iterate loop

asam = ax ; sample
kcnt = 0 ; reset counter

asig = p10*asam ; amp scaling
asig linen asig, .05, p3, .05 ; fade in fade out

outs asig*p8, asig*(1-p8)

endin

11Agostino Di Scipio - Sound Synthesis by Iterated Nonlinear Functions

; SCORES FOR IFS2.ORC
;
; p4 = initial value for the control parameter (r)
; p5 = final value for the control parameter (r)
; p6 = max value for x(0)
; p7 = iterate number
; p8 = stereo location (0,1)
; p9 = increment step for x(0)
; p10 = global amplitude
; p11 = min value for x(0)
; p12 = table function envelope for the control parameter(r)
;
; EX9.SCO
; dynamical control over x(0) (values between p11 and p6)
; envelope on r values
;
f 1 0 2048 10 1
f 2 0 2048 5 .01 250 1 1900 .001
;
; varying x(0), fixed r
;
; xstart xend
i2 0 3 3 3 0 5 .5 50 30000 .2 2
i2 + . 3 3 0 5 .5 50 30000 .4 2
i2 + . 3 3 0 5 .5 50 30000 .6 2
i2 + . 3 3 0 5 .5 50 30000 .8 2
i2 + . 3 3 0 5 .5 50 30000 1 2
s
;
; fixed x(0), varying r
;
i2 0 3 3 2 .3 5 .5 50 30000 .3 2
i2 + . 3.2 2 .3 5 .5 50 30000 .3 2
i2 + . 3.4 2 .3 5 .5 50 30000 .3 2
i2 + . 3.6 2 .3 5 .5 50 30000 .3 2
i2 + . 3.8 2 .3 5 .5 50 30000 .3 2
s
; EX10.SCO
; similar with EX9.SCO

12 Virtual Sound

;
i2 0 2 3 3 0 5 .19 50 10000 .2 2
i2 1 . 3 3 0 5 .95 51 10000 .21 2
i2 1.1 . 3 3 0 5 .25 50.1 10000 .23 2
i2 1.9 . 3 3 0 5 .75 50 10000 .38 2
i2 2.1 . 3 3 0 5 .15 49.3 10000 .4 2
i2 3 . 3 3 0 5 .85 50.1 10000 .46 2
i2 3.2 . 3 3 0 5 .15 50 10000 .48 2
i2 4 . 3 3 0 5 .95 49.3 10000 .56 2
s
i2 0 2 3 2 .2 5 .45 50 10000 .2 2
i2 1 . 3.2 2 .2 5 .55 50 10000 .2 2
i2 1.1 . 3.24 2 .2 5 .15 50 10000 .2 2
i2 1.8 . 3.3 2 .2 5 .85 50 10000 .2 2
i2 3.1 . 3.4 2 .2 5 .35 50 10000 .2 2
i2 3.4 . 3.6 2 .2 5 .65 50 10000 .2 2
i2 4 . 3.68 2 .2 5 .55 50 10000 .2 2
i2 4.9 . 3.75 2 .2 5 .45 50 10000 .2 2
e

BIBLIOGRAPHICAL REFERENCES

A. Di Scipio “Caos deterministico, composizione e sintesi del suono”, Proc. of the 9th
Colloquium on Musical Informatics, AIMI/DIST, Genova, 1991

A.Di Scipio & I.Prignano “Functional iteration synthesis. A revitalization of non-
standard synthesis”, Journal of New Music Research, vol.25, 1996

I.Prignano “Sintesi di eventi sonori complessi per mezzo di Iterazioni Funzionali”,
Proc. of the 11th Colloquium on Musical Informatics, AIMI/DAMS, Bologna, 1995

(Translated from the Italian by the author)

13Agostino Di Scipio - Sound Synthesis by Iterated Nonlinear Functions

Extract from "Virtual Sound" by R. Bianchini - A. Cipriani
Copyright © 2008 - 1998 ConTempoNet s.a.s., Rome, Italy - All rights reserved

