
DYAD CONTROLLED ADDITIVE SYNTHESIS

by James Dashow

The rather dramatic increase in computational power of the newest CPUs for personal
computers breathes new life into additive synthesis as a practical means for the
generation of complex time-varying electronic sounds. To be effective, additive
synthesis will often require a large number of oscillators, or in more advanced languages,
the use of a multiple oscillator unit that does the work of internally summing several
oscillators via an optimized loop structure. 

There still remains the problem of controlling each oscillator with its own amplitude
envelope and frequency variance, requiring that the composer prepare and manipulate a
large amount of data: separate amplitude, pitch and function tables, if desired, for each
oscillator. 

The composer can, of course, design a high level score data routine that automatically
adjusts these parameters based on global input variables;  the group of oscillators and
associated amplitude envelopes can be considered as a single unit with a small amount
of data as input which is elaborated by the score routine into all the specific information
necessary for the additive synthesis instrument to execute as desired.  Even then, the
composer will have to specify the individual frequency components in some way, and
while additive synthesis offers what amounts to infinite variety of frequency
combinations, this very infinity can prove an obstacle for sustained compositional use. 

The method suggested here considers several oscillators as a single unit while the
frequency of each oscillator is determined by the application of mathematical procedures
that produce a set of results (here interpreted as frequency components) as a function of
a very small number of variables (no more than 5, often less).  There is, in this approach,
no separate amplitude control over the individual components, only an amplitude re-
scaling of the final output sum of the several oscillators.  That is, one of the constraints
of this concept is to accept equal amplitudes (numerically equal, not necessarily
perceived as equally loud) of the separate frequencies as a characteristic of the generated
sound, in the same way we accept the constraints of the partial amplitudes that make up
the sound of the oboe or the flute as being simply those instrumentsí characteristic
timbre.  It will become clear that this particular limitation hardly puts us at any
disadvantage with respect to the variety of sound obtainable from this method.
Nevertheless, an adventurous user can easily apply separate amplitude controls to each
oscillator, or group the oscillators into frequency zones (by filtering or by programmed
logic) and apply amplitude envelopes to those zones rather than to each oscillator. 

One standard use of additive synthesis is to declare certain frequencies, or even a single
frequency, along with others that might have particular relationships (elaborated under



program control) to the principle frequencies; these derived frequencies would be the
timbral context for the principle frequencies.  Further timbral manipulation can be
achieved varying the function table(s) being used for the various oscillators making up the
spectrum as a whole. The composer could conceivably design combinations of
frequencies, harmonic and, especially, inharmonic, in order to characterize specific
musical intervals, such that each interval has its set of characteristic timbres. Musical
development of this notion would be through the mutual exchanging, sharing or excluding
of timbral components while various combinations of intervals are being played. 

The approach suggested here is based on dyads, specific intervals (in this case the
intervals of the Western chromatic scale) that are made to generate sets of frequencies,
often inharmonically related to each other, as the result of algorithmic procedures.  The
dyads, or intervals, needn’t be limited to the chromatic scale, of course, but since the
resultant frequency collections are generally inharmonic, it is hardly necessary to think
in terms of intervals outside the well-tempered system.  The advantage in this case is that
the sounds have at least two frequencies, the dyad, that can in one way or another be
picked up timbrally by live traditional instruments.  Needless to say, any interval,
Western-chromatic or non, can be used as input to the algorithms described below. 

The composer chooses or invents an algorithm that will generate a set of frequencies.
The equations of the algorithm are re-arranged so that it is the interval, or what will be
called also the «generating dyad», that determines the way the algorithm generates the
frequency components. The interval itself determines the frequency content produced by
algorithm execution, and hence it is the interval that determines its own timbre. The two
frequencies of the dyad are always present as two of the components of the generated
frequency set.  As we shall see, for any generating dyad there are a variety of frequency
sets available (depending also on the type of algorithm), such that we can get many
different groups of frequencies generated by the same dyad;  and since the frequencies
of the dyad are always two of the components we have a method not only for generating
varieties of timbres, but also for structurally relating timbres by means of frequencies in
common, the generating dyad itself. Using the same generating dyad with different
algorithms yields a wide variety of electronic sounds all of which have at least the
generating dyad in common among their frequency components.  

This represents a very useful reduction of data that the composer has to worry about.
Once the sound synthesis process has been programmed with the algorithm, the
composer interfaces with the additive synthesis in terms of musical information rather
than numeric:  the generating dyad (as a musical interval or as a pair of pitches) and the
necessary subsidiary «orchestrational» data: where in the spectrum the generating dyad
is to be produced (register) and the timbral quality as influenced by no more than two
additional factors (the function table and/or a timbral factor for the algorithm).  The
composer does not need to know all the frequencies generated by the procedure, on the
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contrary, at this point what counts is the varieties of sound, of timbre, that a generating
dyad can be made to produce:  work for the ears.  

The first and easiest of these algorithms to implement is a set of frequencies generated
by the following equation: 

f(N) = f(0)+N*A [1] for N = 1,2,3....

This reads: the Nth frequency f(N) is generated by a starting frequency f(0) plus N
times some factor A.  If the starting frequency f(0) = 100 and A = 75, then 

frequency 0 f(0) = 100 + 0 * 75 = 100 (the starting hz) frequency 1 f(1) = 100 + 1 * 75
= 175 frequency 2 f(2) = 100 + 2 * 75 = 250 frequency 3 f(3) = 100 + 3 * 75 = 325 etc.

Note the intervallic relationships between the frequency components.  Between the
starting frequency f(0) and f(1) the interval is 175/100 = 1.75; between f(2) and f(1), the
interval is 250/175 = 1.4286;  between f(3) and f(2), 325/250 = 1.3;  the intervals get
smaller the higher the N.  This algorithm generates frequencies with equal differences
between components which means the intervals will always get smaller the higher the N.
This is, of course, the same frequency relationship for the upper sidebands of FM
synthesis.  Here, however, there is no algorithmic dependent time-varying dynamic
change of the amplitudes or phases of the components as with FM, except what the
composer wishes to add with the appropriate envelope controls.  And these controls can
be freely designed and manipulated, again, in contrast to the fixed necessary evolution
of sidebands with FM. 

To use the generating dyad idea, we say:  let any two of the frequencies generated by
equation (1) be the two frequencies of the dyad.  For example, lets use an interval of an
octave and a minor third, which has a ratio of 2.3784;  if the f(0) is 100 Hz, the
component an octave and a minor third above it is 237.84 Hz.  We can have then the
octave and a minor third as component f(2) or as f(3) or as f(4) or any.  Let’s put it on
f(2).  Then since we know the frequency for f(0) (100) and for f(2) (237.84), we get: 

f(0) = 100 = 100 + 0 * A
f(1) =  ?  = 100 + 1 * A
f(2) = 237.84 = 100 + 2 * A

and we can calculate the A factor from the expression for f(2):

A = (237.84 - 100) / 2
= 68.92
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Now we can generate a set of frequencies f(N) = 100 + N * 68.92 that will yield 100
as f(0) and 237.84 as f(2): 

f(0) = 100 = 100 + 0 * 68.92 f(1) = 168.92  = 100 + 1 * 68.92 f(2) = 237.84 = 100 + 2
* 68.92 f(3) = 306.76 = 100 + 3 * 68.92 etc.

We can do the same thing if 100 Hz is f(0) and 237.84 is f(5):  

f(5) = 237.84 = 100 + 5 * A
A = (237.84 - 100) / 5 = 27.568

And the frequency set f(N) with the generating dyad at position 0 and 5 (f(0) and f(5))
in the spectrum is produced by applying general equation (1) with A and f(0) set
appropriately, 

f(N) = 100 + N * 27.568. 

This will get us a different set of frequencies but with the 100 and 237.84 components
in common.  A different timbre is produced but maintains a continuity between them,
that of the common generating dyad. 

Note, however, that the way we calculated A was by dividing the difference between
the two frequencies of the generating dyad by the difference between their position
numbers.  So we can generalize by writing that the A factor is: 

A = (UP - LP) / (NU - NL)       [2]

where UP (or Upper Pitch) and LP (Lower Pitch) are the frequencies of the two
members of the generating dyad, and NU (Upper component Number) and NL (Lower
component Number) are the positions of the dyad (their «register» in more musical
terms) in the frequency set, or spectrum. 

In these two examples, we’ve always called for the LP, the bottom pitch of the dyad, to be
generated as f(0), the starting frequency of the spectrum.  This not need be the case.  We can
just as easily call for LP = 100 Hz on f(1) and UP = 237.84 Hz on f(3).  In that case we get: 

f(0) = f(0) + 0 * A
f(1) = 100 = f(0) + 1 * A
f(2) =  ?  = f(0) + 2 * A
f(3) = 237.84 = f(0) + 3 * A
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Now we have two unknown quantities in the f(3) expression, but with a little algebra
we can eliminate one of them:  subtract 

f(3) - f(1) = (f(0) + 3 * A) - (f(0) + A)
f(3) - f(1) = 2*A

since f(3) and f(1) are the generating dyad frequencies,

237.84-100 = 2*A

A = 68.92

and to find f(0), we can go back to f(1):

f(1) = 100 = f(0) + 68.92
f(0) = 100 - 68.92 = 31.08

So the frequency set f(N) for the generating dyad at positions 1 and 3 will be 

f(N) = 31.08 + N * 68.92,

and the general expression for f(0) is then

f(0) = LP - NL*A,           [3]

or, the beginning Hz of the frequency set is the lower pitch of the generating dyad
minus it’s position number times the constant difference factor between frequencies in
the set.  If NL is 0, then f(0) = NL, as we saw in the first examples. 

So for any dyad, any interval, any pair of frequencies, equations [2] and [3] provide
values for A and for f(0), which are then plugged into repeated uses of equation [1] to
generate a set of frequencies f(N) that will have the dyad at the declared positions in the
spectrum.  Changing the position of the dyad frequencies changes the f(0) and A values
and thereby changes the timbre.  But the dyad is always there.  You can play as many
other frequencies above and sometimes below the generating dyad members as you like
depending on the desired timbre.  If the generating dyad is on components 3 and 7, for
example, then you might decide to play frequencies f(2) through f(8) or f(0) through
f(11), depending on the sound quality required for the musical context. 

Additional timbral variety is obtained by using complex wave tables for the
oscillators.  This method accepts the constraint that all oscillators playing use the same
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wave table;  the sum of oscillators is considered a unit instrument here, to keep the score
data within more practical dimensions. Again, the composer can specify a different wave
table for each oscillator, and together with time-varying amplitude control or the re-
generation of the wave table during performance, achieve a high degree of
transformational control over the timbral evolution. 

In this instance, we not only can generate a wave table with different harmonic partials
starting with the first partial, say the sum of the first 4 odd partials (using gen10:
1,0,0.333,0,0.2,0,0.167), we can also generate an arbitrary set of partials that have
inharmonic relationships between themselves, for example using  gen09:  6 1 0  11 0.3
0  19 0.15 0.  Here the wave table contains the 6th, 11th and 19th partial (with diminishing
amplitudes) whose ratios 11/6, 19/6 and 19/11 are not those of the equal tempered scale.  

To use this wave table in the additive synthesis instrument, the composer decides
which of the 3 partials will actually play the frequency assigned to each oscillator, and
then divide that frequency by the chosen partial number.  The other two partials will play
that frequency (the f(N) divided by the chosen partial number) at the ratios between the
partials generating inharmonic frequency relationships >for each frequency f(N) in the
additive synthesis set<.  If we call for 5 frequencies, f(0) through f(4), and play each
frequency with the wave table containing the partials 6t,11 and 19, then the additive
synthesis sound will be consist of 15 frequencies, not just five, with complex inharmonic
and harmonic relationships between them.  Timbral variety is assured. 

In the first example above, if we decide to play all each frequency in each oscillator
on the 6th partial, the lowest in this wave table, we can adjust the f(N) set of frequencies
by dividing each one by 6, or f(N) = f(N)/6.  But to save computation time, it’s more
efficient to divide the generating dyad’s frequencies by 6 (the chosen partial number)
before beginning the f(N) calculations.  We can also play the f(N) frequencies on the 11th
or the 19th partial (perhaps adjusting the amplitude of the latter a bit) as well, dividing
the generating dyad frequencies by 11 or 19; this will produce frequencies below the f(N)
frequency (the frequency generated on the 6th partial will be 6/11 lower than that
generated by the 11th partial (etc.) which can yield some very rich and musically useful
timbres.  Designing various wave tables for a single dyad and a single algorithmic
realization yields a rich variety of timbres all generated around the same two
frequencies, the generating dyad. 

We can make a small Csound instrument out of this equation with the following code;
here the maximum size is 6 oscillators, but you can easily expand this.

sr = 44100
kr = 44100 ;<- note sr=kr!!!!
ksmps = 1
nchnls = 1
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instr 1
; p4 = amplitude, in absolute values 
; p11 = overall re-scale after reducing 
;    amplitude by number of oscillators playing
; p11 is in the range 1.3 to 1.6
; p5 = UP, p6 = LP, p7 = NU, p8 = NL, p9 = partial number, p10 = wave table number 

iup = cpspch(p5)/p9
ilp = cpspch(p6)/p9 
iafac = (iup-ilp)/(p7-p8)
if0 = ilp - iafac*p8
inf = p10; 

; p11 = highest oscil num;  p12 = lowest oscil num;  1 thru 6 here 
inum =   p11 - p12 + 1

; now rescale the amplitude by the number of oscils playing 
iamp = p4 * inum * p11 

; now calculate the components for num Hz as init, and play in perf 
kcount init inum ; p-time always reset 
atotsig = 0 ; audio variable that accumulates the sum of oscili outs for

; each sample
if p11 == 0 goto x0
if p11 == 1 goto x1
if p11 == 2 goto x2
if p11 == 3 goto x3
if p11 == 4 goto x4

x5:
; this is the algorithm, equation (1) with specific
;  values for the f(5), the sixth Hz component

if5 =   if0 + 5*iafac           
asig5 oscili 1, if5, inf, iphs
atotsig = asig5;

;   FIRST entry point doesn’t need counter as there are always at least 2 
;    oscili’s playing
x4:

if4 = if0 + 4*iafac     ; this is the algorithm (1) generating f(4)
asig4 oscili 1, if4, inf
atotsig = atotsig + asig4
kcount = kcount - 1
if kcount == 0  goto xend

x3:
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if3 =   if0 + 3*iafac      ;  etc.
asig3 oscili 1, if3, inf
atotsig = atotsig + asig3
kcount = kcount - 1
if kcount == 0  goto xend

x2:
if2 = if0 + 2*iafac
asig2 oscili 1, if2, inf
atotsig = atotsig + asig2
kcount = kcount - 1
if kcount == 0  goto xend

x1:
if1    =   if0 + iafac
asig1  oscili 1, if1, inf
atotsig = atotsig + asig1
kcount = kcount - 1
if kcount == 0  goto xend

x0:
asig0 oscili  1, if0, inf
atotsig = atotsig + asig0

xend:
;  here you can rescale the atotsig and control it with an amplitude envelope.

atotsig = atotsig * iamp   ; etc.
out atotsig
endin

Perhaps with a score like this, using an interval of an octave and a minor seventh. Note the differences in timbre between
f1 and f2:

f1 0 4096 9 6 1 0 11 1 0 19 1 0
f2 0 4096 9 7 1 0 11 1 0 18 1 0 \

26 10

;1 2 3 4 5 6 7 8 9 10 11 12
;ins act dur amp up lp nu nl parts fno hiosc loosc
i1 0 5 100 10.00 8.02 4 1 6 1 6 1
i1 + 5 100 10.00 8.02 4 1 7 2 6 1

Since this algorithm can be expressed also in the form
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f(N) = f(N-1) + A [1b]

you can program the Csound instrument in a somewhat more computationally
efficient fashion avoiding the multiply for each f(N). 

You can also use small frequency values, like 1.1 Hz, to get interesting phasing and
chorus effects.  You must always divide by the partial number being used in the wave
table, even with these small Hz values. 

Or, you can use linseg or a data table to control a succession of intervals based on the
same LP;  the variables f1, f2, f3, f4 etc. would be controlled by the linseg output in k-
time or re-initialized (reinit) with new values for each interval read off a data table.
Other variants can easily be invented. 

A closely related algorithm is one which produces frequencies that are equal
proportions away from each other, not equal distances, or 

f(N) = f(0) * M^N        [4a]

which can also be written in the form

f(N) = f(N-1) * M,        [4b]

where M is a constant multiply factor.

Using form [4b] in the instrument avoids having to do an exponential operation for
each f(N) calculation, not an efficient procedure by any means. 

This equation is the prototype for the equal-tempered scale, or for that matter, any
scale whatsoever.  For the Western chromatic scale, the keys on the piano are tuned
according to 

f(N) = f(0) * 1.0594631^N

or f(N) = f(N-1) * 1.0594631

the multiply factor M is simply the 12th root of 2, the semitone.  If we use the
generating dyad approach we are in effect generating «scales» that have inharmonic
intervals as «scale steps».  The procedure is substitute the known values for the
generating dyad, UP and LP, along with their (composer chosen) position, NU and NL,
in the f(N) collection, or spectrum, do a little algebra and derive expressions, as before,
for the f(0) and M values that are plugged into equation [4b] which is programmed into
the Csound instrument. 
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UP = f(0) * M^NU
LP = f(0) * M^NL

now we eliminate the f(0) variable by dividing

UP/LP =  M^NU/M^NL = M^(NU-NL)

and solve for M (ln is the natural logarithm, to the base e):

M = exp(  ln( UP/LP ) / ( NU-NL ) ).       [5]

Then we can find 

f(0) = LP/M*NL [6]

In the Csound instrument above, where we’ve written Afac and  f(0), equations [2] and
[3], substitute 

imfac  =  exp(log(iup/ilp))/(p7-p8))
if0 = ilp/(imfac^p8)

and change every reference to iafac in the program to imfac.  

Finally where the algorithm [3] is written specifically for each f(N) in the instrument,
substitute [4a] - or substitute [4b] for [1b] if you’ve worked that version out - 

if5  =  if0 * pow(imfac^5)

etc.

There are many many more algorithms that can be explored.  For example, try an
adaptation of the «partial stretching» algorithm suggested by Steve MacAdams.  The
equation for the harmonic partial series is 

f(N) = f(0) * N.

MacAdams developed the notion of stretching the partials by writing the equation as 

f(N) = f(0) * N^S        [7]
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where S is the «stretch factor».  Setting S to various values will generate a group of
frequencies whose relationships quickly become inharmonic, producing some
interesting timbres, especially if each f(N) is played by a complex wave table. 

The relevant generating dyad equations are worked out as follows: 

UP = f(0) * NU^S
LP = f(0) * NL^S

UP/LP = NU^S / NL^S = (NU/NL)^S

S = ln( UP/LP ) / ln( NU/NL )        [8]

and then                  f(0) = LP / NL^S.             [9]

Again, in the Csound instrument, you substitute [8] and [9] for [2] and [3], and in the
body of the instrument substitute the appropriate form of [7] for  [1b], the calculation of
the algorithm for each specific frequency. 

You can work with more than one extra variable;  one series of algorithms use a
multiply, add  procedure as the basis, another series uses  add, multiply as the basis.
These algorithms have both a Multiply and an Add factor, which requires the composer
to specify not only the generating dyad and the position of the dyad frequencies in the
sound, but either an Add factor, and the algorithm finds the Multiply factor, or the
reverse - the Multiply factor and the algorithm finds the Add factor. 

The simplest Multiply, Add algorithm is 

f(N) = f(0)*M^N + N*A [10]

while the simplest Add, Multiply is

f(N) = M^N * (f(0) + N*A)          [11]

Now there are two generating dyad equations for [10] and for [11], depending on
whether the composer supplies the M factor or the A factor. Equation [11] can be solved
for «given A, find M» mode only if the lowest pitch of the dyad, LP, is also the f(0), the
bottom frequency of the spectrum. Note that in almost all of these cases, where you
might specify the Lower Pitch, LP and the Upper Pitch, UP, of the generating dyad at
positions 1 through whatever, where 1 is the lowest frequency in the spectrum, you must
refer to the bottom position as 0 in order for the mathematics to work properly, that is,
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you should subtract 1 from the given NU and NL values (unless you are already working
with 0 through N-1 to indicate 1 through N). 

For (10):  given M (the multiply factor) find A (the Add factor), the dyad equations for
the Csound instrument are («mx» is a temporary work variable): 

mx = M^(NU-NL)

A = ( UP - (mx*LP) ) / ( NU - (mx * NL) )

or given A find M mode, algorithm (10) equations are:

mx = log( ( UP - (A * NU) ) / ( LP - (A * NL) ) )

M = exp( mx / (NU - NL) )

and in both modes solve for f(0):

f0 = LP;
if (NL != 0.0) {

div = pow(M,NL);
f0 = (LP - (A * NL) )/ div;

}

For (11):  given M find A mode, the equations are (again it is useful to use couple of
extra work variables, uxpn and lxpn): 

uxpn = M^NU
lxpn = M^NL
A = ( (UP / uxpn) - (LP / lxpn) ) / (NU - NL);

in given A, find M mode, the equations can be resolved only with LP being declared
the f(0) frequency, NL = 0 for these equations: 

mx = log( UP / ( LP + (A * NU) ) );
M =  exp(mx/NU);

and in both modes you solve for f(0):

f0 = LP;
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if (NL != 0.0)  /* true only for given M find A mode */
f0 = (LP / lxpn) - (A * NL);

As a final specific example, another equation for a frequency set generator has proved
extremely flexible: 

f(N) = M * f(N-1)^2 / f(N-2)     [12]

This reads: the current frequency N in the spectrum is the product of some multiplier,
or scalar factor, M times the preceding frequency in the set squared divided by the next-
to-last frequency in the set.  If M = 1, the ratio between the first and second frequencies,
f(0) and f(1) determines the ratio between all succeeding frequencies.  If that ratio is
1.0594631, we get the standard chromatic scale, for example. 

If M is less than 1 then the ratios between frequencies get progressively smaller by
exactly that value M for each frequency in the set, or a contracting interval series.  If M
is greater than 1, however, the reverse happens and we get an expanding interval series,
which is quite unusual, and very useful for creating different kinds of timbre.  In fact,
even with M > 1, if the NU and NL are in the middle of a spectrum, say 5 and 3,
respectively, it is easy to generate a frequency set whose lower f(N) frequencies have
intervals that compact going toward the LP of the generating dyad and which then
expand going beyond the UP of the generating dyad.  In short, the M factor determines
the character of the interval pattern in a way that offers the composer greater control over
the evolution of the frequency set than in many other algorithms. 

The program is a little more involved, as the first two frequencies, f(1) and f(2),  of
the set have to be derived from the generating dyad and the M factor.  Note in this case
we don’t use f(0), or NL = 0, rather the lowest frequency in the set is N = 1.  

mx = NU - NL;
lxpn = mx - 1.0;
if (lxpn == 0.0)
flp1 = UP;  /* in Csound, use if  go construct */
else {
expM = pow(M, (mx*lxpn*0.5));
lpxp = pow(LP, lxpn);

/* flp1 is the f(NL+1) */
flp1 = pow( (lpxp*UP/expM), (1.0/mx) );

}
/* now find the first two frequencies in the spectrum set, f1 and f2  */
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if ( NL == 1.0) {  /* if true, then LP is the bottom hz f1 */ f1 = LP; f2 = flp1;
}

else  {
/* cycle through down progressively lower Hz until you get to f1
where each next f(L-1) = M * LP^2/flp1 */
MmU = LP;   /* initialize another auxiliary variable */ f2 = flp1;
for ( j = NL-1; j > 0; j—) {
f1 = M*MmU*MmU/f2;
f2 = MmU;
MmU = f1;
}  /* end of for loop */
}  /* end of else */

When you get here you have values for f1 and f2 which are the first two frequencies
f(1) and f(2) in the spectrum;  you then calculate f(3) on up to as many as desired using
equation (12), the first few times would look like this: 

f(3) = M * f(2)^2/f(1);
f(4) = M * f(3)^2/f(2);
f(5) = M * f(4)^2/f(3);    etc.

if the generating dyad frequencies were declared at NU = 5 and NL = 3, you would
produce them as f(3) and f(5), above. 

Other versions of Multiply, Add and Add, Multiply suggest themselves.  In working
out the generating dyad usage for these algorithms, I found that many have a wide range
of possibilities, while others are more «temperamental» working better with certain
intervals in specific frequency ranges and conditions (close NU and NL positions, or
very wide NU NL positions, very small M factors, or very large Add factors, etc.).  

In the generating dyad mode, some of these equations do not have solutions for
«given Add, find Multiply», while others, like [11] above, have solutions for «given
Add, find Multiply» only if f(0) is LP, i.e. the starting pitch is also the low pitch of
the generating dyad, effectively eliminating one of the variables.  These are marked
in the list below. 

It has also been found extremely useful to write a separate C program, independent of
Csound, that displays on screen the f(N) results of any configuration of any of these
algorithms.  It helps to see where an f(0) frequency is a sub-audio value, say .003 Hz (but
the algorithm produces interesting frequencies in the f(2) through f(7) range), or where
some of the generated values are in the hundreds of thousands.  For this reason the
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Csound instrument parameters p11 and p12 allow you to avoid some of the frequency
values that are useless, often the first ones or last ones in the array of values.  

A compiled c-routine and its source code (inhntrvl.c inhntrvl.exe inhnmenu.man), that
does exactly as described for PC can be downloaded from the writer’s web site.  The
routine contains the generating dyad equations for these algorithms which can be easily
adapted to the prototype Csound instrument illustrated above. 

MULTIPLY then ADD
f(N) = f(N-1)*M^N + A*N -> ONLY in given M find A mode;

(the add and multiply version,  f(N) = f(N-1)*(M^N + A*N),
yields virtually identical spectra)

f(N) = f(0)*N^M + A*N  -> Stretch Factor,  no restrictions;
these next two work correctly ONLY with NL > 1 and xx & yy > 0; 

xx & yy can be fractions
f(N) = f(0)*M^N + A*X     -> X = N+xx/N+yy 

f(N) = f(0)*M^N + A*N^X   -> X = N+xx/N+yy 

f(N) = f(0)*M^N + A*N^M   -> ONLY in given M find A mode;

ADD then MULTIPLY
for the next two, in «given A find M» mode, NL can ONLY be 1 (i.e. f(0) is LP). to

avoid overflow errors, your init routines should default NL to 1 automatically in this
mode.  There are no restrictions for «given M find A» mode. 

f(N) = M^N*(f(0) + A*N)
f(N) = N^M*(f(0) + A*N)    ->  Stretch Factor proc
f(N) = f(0)*(M + A*N)  -> all OK, but watch the range of M & A for small LP
and large NU, A can become negative and generate useless frequency values.
f(N) = f(N-1)*(M + A*N) often generates a set of expanding intervals going up.. 

the above is limited to NU = NL + 1 ALWAYS, i.e. 2 and 3, 4 and 5, 5 and 6. using A
find M gets huge Hz values; use VERY small A and small intervals. also very effective
with smallish M (1.1 to 1.8 range).  Small intervals in the gen dyad work very well here
also. 

f(N) = M^N*(f(0) + A*N^M)  -> ONLY in given M find A mode
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these work correctly ONLY with NL > 1 and xx & yy > 0, 

xx and yy can be fractions.  can be used only in «given M find A» mode.
f(N) = M^N*(f(0) + A*N^X)  -> X = N+xx/N+yy 
f(N) = M^N*(f(0) + A*X)    -> X = N+xx/N+yy 
f(N) = M^N*(f(0) + A^X)    -> X = N+xx/N+yy 
f(N) = N^M*(f(0) + A^X)    -> X = N+xx/N+yy 

There are many others.
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