
!"
#$%&

'(')%*+$,(#-
.
/,%0

"
1/,%'.

2
%3-

"
.
2
%&
$1/4

.

!

"#$%&'()*&
+
#$,

&-.&'(&
/
#$0

&.&

!"#$%&
'"()*+ ',)-./&$&+ 0)*+ 12"%/&&$)3+ 4+ 52/6(/)%,7+ 89#:$-(*/+ 0)*+ ;0</="29+ 4+ >)</:"#/&+
0)*+ ?:$&&0)*$+ 4+ 8**$-$</+ ',)-./&$&+ 0)*+ @/%-"2+ ',)-./&$&+ 4+ A"$&/+ ?/)/20-"2&+ 4+ 5$:-/2&+
4+ '(B-20%-$</+ ',)-./&$&+ 4+ @$2-(0:+ ',)-./&$C/2+ 12"32099$)3+ 4+ >6(0:$C/2&7+ D9#(:&/&+ 0)*+
E/&")0)-+F"*$/&+4+G")-2":+'$3)0:&+0)*+H5I&+4+1(2/+J0-0+12"32099$)3+!/%.)$6(/&

!"#$ #$ &"'% (#)$&% #* +% $')#'$,(-,./0'$%1'1#2+&'1% &, 1#3#&+.% $4*&"'$#$%+*1% $,/*1%1'$#3*5% 6& #$ 7+)& ,(+% $&)/2&/)'1%
&'+2"#*3 0'&",1 #*2,)7,)+&#*3%+%$/8$&+*&#+.%+0,/*& ,(,*.#*' $/77,)&#*3 0+&')#+.$9%"/*1)'1$,($,/*1%':+07.'$ +*1%
#*&')+2&#-'%':+07.'$;%7),3)+0$%<)#&&'*%#*%=/)'%>+&+;%+$%<'..%+$%+%.#8)+)4%,(%=1%,8?'2&$%2)'+&'1%'$7'2#+..4%(,)%&"#$%8,,@5

AB/$#2 0+@#*3 #$ +%0/2" ()'')%+*1%<#1')C)+*3#*3%+2&#-#&4 &"+* #& <+$%8'(,)' &"'%+1-'*& ,('.'2&),*#2$;%0'1#+&'1%
+$ &"'4 +)'%+.0,$& +.<+4$ &,1+4%84 2,07/&')$5%!"')'%+)'%0+*4 7,$$#8#.#&#'$%,/&%&"')'%&, ':7.,)';%+*1%$&/14#*3 8,&"%
&"'% &"',)4 +*1% &"'%7)+2' ,(+/1#,%7),3)+00#*3% #$ &"'%8'$& (#)$&% $&'7 ,(&"'%<+4DE555F%A!"#$%7+)/.+) $&+2@%,(%
&'2"*,.,3#'$ "+$%8''* 2)+(&'1%<#&" &"'%3,+.$%,(&"#$ 8,,@ #* 0#*19%7)#0+)#.4;%+$ 6%$''%#&;%&, ,7'* +%7+&" +.,*3%<"#2"%
&"'%)'+1') E<"'&"') +%$&/1'*&%,) +* #*1'7'*1'*&%)'+1')F%2+*%3'&%+%&"',)'+.%+*1%7)+2+.%/*1')$&+*1#*3%,(&"'%
(/*1+0'*&+.%&'2"*#G/'$ (,)%0+@#*3 0/$#2%<#&" +%2,07/&');%&, 0+@' &"#$ 7),2'$$%+$ 1#)'2& +*1%$&)+#3"&(,)<+)1%+$%
7,$$#8.';%+*1%&,)'G/#)'%+%0#*#0/0%,($7'2#+.#H'1%@*,<.'13'%#* +1-+*2'5D%
E(),0%&"'%(,)'<,)1%84%B#..')%=/2@'&&';%&"'%,)#3#*+.%+/&",)%,(%B+:%+*1%=/)'%>+&+F

5E8AG>'GI+FD8AGKD #$%0+#*.4%#*-,.-'1%<#&"%0/$#2%2,07,$#&#,*%+*1%2,07/&')%0/$#25%I'%2,07,$'1%-+)#,/$%
7#'2'$%,(%8,&"%-,2+.%+*1% #*$&)/0'*&+.%'.'2&),*#2%0/$#2;%<"#2"%"+-'%8''*%7')(,)0'1% #*%0+*4%0/$#2% ('$&#-+.$%
+*1%#*$&#&/&#,*$%,(%$'-')+.%2,/*&)#'$%E$/2"%+$%&"'%I/11')$(#'.1%J*#-')$#&4;%&"'%K''1$%J*#-')$#&4;%+*1%&"'%B/$#2%
L,*$')-+&,)#'$%,(%M,0';%!/)#*;%+*1%=')/3#+F5%I'%<,*%&"'%&"#)1%7)#2'%+&%&"'%2,*&'$&%AN+.'*&#*,%O/22"#D%#*%PQQR;%
&"+*@$% &,%"#$%7#'2'%AL')2.'D5%S*%&"'%,22+$#,*%,(%T:7,%PQUV%"'%2,..+8,)+&'1%,*%+%7),?'2&%,*%1'$#3*#*3% &"'%
$,/*1%(,)%&"'%1+&+%2+7&/)'1%84%+%(,,1%&'$&#*3%1'-#2';%1'-'.,7'1%+&%&"'%J*#-')$#&4%,(%=+)0+5%I'%2)'+&'1%$'-')+.%
$,(&<+)'%.#8)+)#'$%&,%':&'*1%&"'%('+&/)'$%,(%=/)'%>+&+%+*1%B+:5%W.$,;%(,)%&"'$'%&<,%$,(&<+)'%+77.#2+&#,*$%"'%#$%
2/))'*&.4%<,)@#*3%,*%8#,$K#8;%<"#2"%#$%+%2,..'2&#,*%,(%,8?'2&$%&"+&%#07.'0'*&%+)&#(#2#+.%.#('%+.3,)#&"0$5

8H>''8AJEI+GD1ED8AD+ 2,C+/&",)'1%AN#)&/+.% X,/*1D;%+% &':&8,,@ ,* L$,/*1 7),3)+00#*35%I#$% 2,07,$#&#,*$%
"+-' 8''* 7')(,)0'1%+& 0+?,)% ('$&#-+.$% +*1%'.'2&),*#2 0/$#2% -'*/'$;% +*1%)'.'+$'1 ,* L>$%+*1%>N>$ #$$/'1 84%
L,07/&') B/$#2% Y,/)*+.;% 6*&')*+&#,*+.%L,07/&') B/$#2%L,*(')'*2' +$ <'..% +$,&"')$5%I' "+$%<)#&&'*%0/$#2% (,)%
&"'%='@#*3 S7')+%!"'+&');%+$ <'..%+$ (,)%(#.0$%+*1%1,2/0'*&+)#'$%#* <"#2"%+08#'*&%$,/*1;%1#+.,3;%+*1%0/$#2%+..%
(/$' &,3'&"');% #*&')2"+*3'+8.45%I' #$ +% &'*/)'1%7),('$$,)% #* '.'2&),*#2 0/$#2%+& &"'%L,*$')-+&,)4 ,(Z),$#*,*';%+%
(,/*1#*3 0'08') ,(&"'%T1#$,* X&/1#, #* M,0';%+*1%+%0'08') ,(&"'%'1#&,)#+.%8,+)1%,(&"'%?,/)*+.%S)3+*#$'1%X,/*1%
E7/8.#$"'1 84 L+08)#13'%B/$#2%=)'$$F5%I' "+$%3#-'*%$'0#*+)$ +& 0+*4 T/),7'+* +*1%W0')#2+* /*#-')$#&#'$;%#*2./1#*3%
&"'%J*#-')$#&4%,(%L+.#(,)*#+%C%X+*&+%O+)8+)+;%X#8'.#/$%W2+1'04%#*%I'.$#*@#;%+*1%W22+1'0#+%1#%X5%L'2#.#+%#*%M,0'5

L8MEDNDI+ ?DED% #$% +% 7),('$$,)% ,(% 2,07,$#&#,*% +$% <'..% +$% +% &'+2"')% ,(% B+:% 7),3)+00#*3% &'2"*#G/'$% +&%
&"'% 2,*$')-+&,)#'$% ,(% K+&#*+% +*1% Z),$#*,*'5% I'% #$% +*% #*$&)/0'*&+.% +*1% '.'2&),+2,/$% 2,07,$')% ,(%0/$#2;%
$7'2#+.#H#*3% #*% 1#3#&+.% $,/*1% 7),2'$$#*3;% #07),-#$+&#,*% +*1% 2,07/&')C+$$#$&'1% 2,07,$#&#,*5% I'% "+$% <)#&&'*%
2,07/&')%+77.#2+&#,*$%(,)%+.3,)#&"0#2%2,07,$#&#,*%+*1%.#-'%7')(,)0+*2';%+*1%"+$%7/8.#$"'1%*/0'),/$%&/&,)#+.$%
,*%B+:5%I'% (,/*1'1%W0+H#*3%[,#$'$;% +% $,(&<+)'% ",/$'% &"+&% 1'-'.,7$%0/$#2% +77.#2+&#,*$% +*1% 7./3C#*$% (,)%
0,8#.'%1'-#2'$%+*1%2,07/&')$5%

<<<52,*&'07,*'&52,0

5#'.,$1,-%6/'.,7/%8%9+$11'.2#-%:/;#/'./%8%0'"#/</-%=/#/

!"#$%&'(')%*+$,(#-./,%0"1/,%'.2%3-".2%&$1/4.
>7$-#?%'.2%!#',(/,$%8%@-+"A$%B

\%]P5QQ%-+&%#*2./1'1

8

SubSynth_Interface SubSynth_Engine

pd osc1

saw
tri
rect
noise

0 detune

pd osc2

saw
tri
rect
noise

0.06 detune

pd mix

0.5

c

pd pw

42

pd lowpass_filter

12 db
24 db

310 cutoff

0 keyfollow

10 env_depth

6 Q

pd highpass_filter

60 cutoff

metro 1000

4000
time

vs.between 36 85

36
pitch_min

49
pitch_max

pd send_data

pd preset

subsynth.filter~

*~

-inf
dac~

1
f.order

6
Q

60
cuthp

pd calc_lpfreq

42
pitch

310
cut_lp

0
kfollow

10
envdepth

pd detuning

0
det1

42
pitch

0.06
det2

subsynth.oscil~

vs.xfade~

3
wf1

3
wf2

0.42
pw

0.42
pw

0.5
mix

vline~

r $0-trig

tabread4~ $0-env

subsynth.oscil~

OSCILLATORS

FILTERS

ENVELOPE

$0-env

v $0-time

v $0-time

vs.env.adsr $0-env
10atk

10dec

75sus

20rel

0 atk_curve

0 dec_curve

0 rel_curve

switch~

$0-spectrum

on/off config

0, 512 $1

send~ spectrum

receive~ spectrum

C! " # $ % & ' " (%)

5#'.,$1,-%6/'.,7/%8%9+$11'.2#-%:/;#/'./%8%0'"#/</-%=/#/

!"#$%&'(')%
*+$,(#-./,%0"1/,%
'.2%3-".2%&$1/4.
1*23.4$'(5$6.')7&)2$$$839:;2$!

Francesco Bianchi • Alessandro Cipriani • Maurizio Giri

This is a demo copy of

PURE DATA:
ELECTRONIC MUSIC AND SOUND DESIGN
Theory and Practice - Vol. 1

full version at:
www.contemponet.com
www.virtual-sound.com

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

Bianchi Francesco. Cipriani, Alessandro. Giri, Maurizio.
Pure Data: Electronic Music and Sound Design : Theory and Practice Vol. 1. /
Includes bibliographical references and index.
ISBN 978-88-992122-1-6
1. Computer Music - Instruction and study. 2. Computer composition.

Original Title: Pure Data: Musica Elettronica e Sound Design - Teoria e Pratica Vol. 1
Copyright © 2016 Contemponet s.a.s. Rome - Italy

Theory chapters translation: David Stutz
Practice chapters translation: Richard Dudas, Simone Micheli and David Stutz

Copyright © 2021 - Contemponet s.a.s., Rome - Italy 

Figures realized by: Gabriele Cappellani and Maurizio Refice
Index: Salvatore Mudanò
Language education consultant: Damiano De Paola

Products and Company names mentioned herein may be trademarks of their
respective Companies. Mention of third-party products is for informational
purposes only and constitutes neither an endorsement nor a recommendation.
The use of general descriptive names, trade names, trademarks, etc., in this
publication, even if the former are not especially identified, is not to be taken
as a sign that such names, as understood by the Trade Marks and Merchandise
Marks Act, may accordingly be used freely by anyone.

All rights reserved. No part of this book may be reproduced in any form by
any electronic or mechanical means (including photocopying, recording, or
information storage and retrieval) without permission in writing from the
publisher.

Contemponet s.a.s., Rome (Italy)
e-mail	 posta@virtual-sound.com

posta@contemponet.com
URL: 	 www.virtual-sound.com

www.contemponet.com

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

IIIPure Data: Electronic Music and Sound Design - Contents

CONTENTS
	 Foreword by Miller Puckette

	 Chapter 1T - THEORY
	 INTRODUCTION TO SOUND SYNTHESIS
	 LEARNING AGENDA
1.1 	 Sound synthesis and signal processing 		
1.2 	 Frequency, amplitude, and waveform 	
1.3	 Changing frequency and amplitude in time: envelopes and glissandi
1.4 	 The relationship between frequency and musical interval
1.5 	 Introduction to working with sampled sound
1.6 	 Introduction to panning
	 Fundamental concepts
	 Glossary

	 Chapter 1P - PRACTICE
	 SOUND SYNTHESIS WITH PURE DATA
	 LEARNING AGENDA
1.1 	 Installation and first steps with Pd
1.2 	 Frequency, amplitude, and waveform
1.3	 Changing frequency and amplitude in time: envelopes and glissandi
1.4 	 The relationship between frequency and musical interval and of
	 amplitude to sound pressure level
1.5 	 Introduction to working with sampled sound
1.6 	 Introduction to panning
1.7	 Some Pd basics
	 List of principal commands
	 List of Pd native objects
	 List of Virtual Sound library objects
	 List of messages for specific objects
	 Glossary

	 Interlude A - PRACTICE
	 PROGRAMMING WITH PURE DATA
	 LEARNING AGENDA
IA.1 	 Binary operators and order of operations
IA.2 	 Generating random numbers
IA.3	 Managing time: the metro object
IA.4 	 Subpatches and abstraction
IA.5 	 Other random generators
IA.6 	 Lists
IA.7	 The message box and variable arguments
IA.8	 Wireless connections
IA.9	 Array
	 List of Pd native objects
	 List of Virtual Sound library objects
	 List of messages for specific objects
	 Glossary

III

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

IV Introduction

Chapter 2T - THEORY
ADDITIVE AND VECTOR SYNTHESIS
LEARNING AGENDA

2.1 Fixed spectrum additive synthesis
2.2 Beats
2.3	 Crossfading between wavetables: vector synthesis
2.4 Variable spectrum additive synthesis

Fundamental concepts
Glossary
Discography

Chapter 2P - PRACTICE
ADDITIVE SYNTHESIS AND VECTOR SYNTHESIS
LEARNING AGENDA

2.1 Fixed spectrum additive synthesis
2.2 Beats
2.3	 Crossfading between wavetables: vector synthesis
2.4 Variable spectrum additive synthesis

List of Pd native objects
List of Virtual Sound library objects
List of messages for specific objects

Chapter 3T - THEORY
NOISE GENERATORS, FILTERS AND SUBTRACTIVE

	 SYNTHESIS
LEARNING AGENDA

3.1 Sound sources for subtractive synthesis
3.2 Lowpass, highpass, bandpass, and bandreject filters
3.3	 The Q factor
3.4 Filter order and connection in series
3.5 Subtractive synthesis
3.6 Equations for digital filters
3.7 Filters connected in parallel, and graphic equalization
3.8 Other applications of parallel filters: parametric eq and shelving filters
3.9 Other sources for subtractive synthesis: impulses and resonant bodies

Fundamental concepts
Glossary
Discography

Chapter 3P - PRACTICE
NOISE GENERATORS, FILTERS AND SUBTRACTIVE

	 SYNTHESIS
LEARNING AGENDA

3.1 Sound sources for subtractive synthesis
3.2 Lowpass, highpass, bandpass, and bandreject filters
3.3	 The Q factor or resonance factor
3.4 Filter order and connection in series
3.5 Subtractive synthesis

IV Contents

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

VPure Data: Electronic Music and Sound Design - Introduction

3.6 Equations for digital filters
3.7 Filters connected in parallel, and graphic equalization
3.8 Other applications of connection in series: parametric eq and shelving

filters
3.9 Other sources for subtractive synthesis: impulses and resonant bodies		

List of Pd native objects
List of Virtual Sound library objects
List of messages for specific objects
Glossary

Interlude B - PRACTICE
ADDITIONAL ELEMENTS OF PROGRAMMING WITH
PURE DATA
LEARNING AGENDA

IB.1 Introduction to MIDI
IB.2 The modulo operator and iterative operations
IB.3	 Routing signals and messages
IB.4 The relational operators and the select object
IB.5 The moses object
IB.6 Reducing a list to its parts: the vs.iter object
IB.7 Iterative structures
IB.8 Generating random lists
IB.9 Calculations and conversions in Pure Data
IB.10 Using arrays as envelopes: Shepard tones

List of Pd native objects
List of Virtual Sound library objects
Glossary

Chapter 4T - THEORY
CONTROL SIGNALS
LEARNING AGENDA

4.1 Control signals: stereo panning
4.2 DC Offset
4.3	 Control signals for frequency
4.4 Control signals for amplitude
4.5 Varying the duty cycle (pulse-width modulation)
4.6 Control signals for filters
4.7 Other generators of control signals
4.8 Control signals: multichannel panning

Fundamental concepts
Glossary

Chapter 4P - PRACTICE
CONTROL SIGNALS
LEARNING AGENDA

4.1 Control signals: stereo panning
4.2 DC Offset
4.3	 Control signals for frequency

VPure Data: Electronic Music and Sound Design - Contents

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

VI Introduction

4.4 Control signals for amplitude
4.5 Varying the duty cycle (pulse-width modulation)
4.6 Control signals for filters
4.7 Other generators of control signals
4.8 Control signals: multi-channel panning

List of Pd native objects
List of Virtual Sound library objects
Glossary

References

	 Index

VI Contents

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

VIIPure Data: Electronic Music and Sound Design - Introduction

FOREWORD
by Miller Puckette

There was a time when programming a digital computer (or an analog one,
which also existed) involved using switches, knobs, and patch cords to program
the thing and to feed it its input data. As late as 1980 or so, the Digital
Equipment Corporation PDP11 had rows of switches on the front. You could
put numbers directly into the machine’s registers or memory.

This was the machine on which Music 11, Barry Vercoe’s music compiler that
later morphed into CSOUND, once ran. To use Music 11 was to function at two
levels of software abstraction from the raw PDP11 hardware: the music compiler
itself, and the operating system that ran underneath it. These two layers of
abstraction saved the user the trouble of learning the PDP11 instruction set or
its memory addressing scheme, or even the binary number system that all its
digital circuitry was based on. But on the other hand, the user had to buy into
various assumptions that the authors of both of these layers made about what
their users might want to do.

Some of these assumptions were overt: for instance, to store data persistently
one organized it into “files”, which weren’t real files at all — those were
made of paper — but were a convenient abstraction built on an easily grasped
metaphor.
At the level of Music 11, an assumption was made that the composer’s input
could divide neatly into a “score”, a sequence of “notes” that presumably
was of the composer’s primary and individual concern, and an “orchestra”
consisting of virtual instruments that composers and researchers frequently
swapped around among themselves.

Music 11 itself played the role of the performer, and did so exactly as a
computer program could be expected to: it caused the instruments in the
orchestra to play the notes in the score, one by one, exactly as prescribed in the
score. Vercoe himself saw this as a compromise that had to be made because
computers of that time weren’t able to generate sound samples interactively,
as we would need to do to allow a human performer into the process. The
available hardware thus constrained the design of the software, which in turn
constrained the composer.

To be sure, the composer had other options. Other electronic instruments of
the time offered different trade-offs: “tape studios” offered a much more
tactile experience and far more sound storage capacity; analog synthesizers
could be played in real time; and hybrid computer/analog systems such as
GROOVE combined computers and analog gear to achieve some of the specific
advantages of each of the two technologies. To choose to work with Music 11
was to decide that its particular advantages were important and its particular
constraints were acceptable.

VIIPure Data: Electronic Music and Sound Design - Foreword

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

VIII Introduction

With this historical example in mind, readers of this book could think about its
own particular choice of technology in a similar way. The technology consists of
three layers: first, the Virtual Sound library, a toolset for synthesizing, analyzing,
and processing digital sounds in real time along with many example applications
and audio materials. This library was designed specifically for users of this book.
Second, underneath Virtual Sound, the Pure Data environment (abbreviated as
“Pd”) provides the necessary fundamental audio building blocks, and the real-
time interactive programming capabilities, upon which Virtual Sound is built. Pd
itself is used in a wide variety of other situations (forinstance, inside video games
or audio “plug-ins”, in concert with video and graphics extensions, and/or with
customizations appropriate to particular production studios) and often appears
with various specialized libraries; so the reader of this book is seeing Pd from
one specific angle. Third, underneath Pd is the operating system and hardware,
which is presumed to be a laptop or desktop computer with a keyboard, mouse,
and display.

I can think of three good reasons to use a computer (instead of, say, a collection of
music-specific hardware devices such as synthesizers, hardware controllers, drum
machines, and/or turntables). The first is cost. Computers are cheap, and since
they can also be used to do many other tasks, there’s a good chance a reader of
this book already has had to get one for some reason. Second, computers are far
more flexible and open-ended in their capabilities than any special-purpose audio
hardware could be. Third, and of particular importance: computers are transparent
in the sense that you can know what they’re doing. Nothing that matters is secret
about them. This is often not the case with hardware instruments.

As to Pure Data, its design also aims for the highest possible level of generality
and transparency. Unlike much computer software, Pd is open-source, so that
there are no secrets about its inner workings. And while many of the design
choices underlying Pd will seem constraining to users, they are much less so
than those of most music software, which is typically designed with particular
workflows and/or musical styles in mind.

And finally, among the many libraries that can be run atop Pd, Virtual Sound
is particular in that it is primarily designed for pedagogy. Although a student
using this book can’t escape having to learn many of the particularities of the
Pd environment itself, the authors have worked hard to make the process as
straightforward as possible for the beginner, who can then focus on the audio
and musical concepts treated in this book, avoiding much of the trouble that
besets the student trying to learn computer music technique using Pd alone.

All this is not to claim that this particular stack of technologies is the answer to
everyone’s needs at all times, but only that it has been crafted with the goals
of this book in mind: primarily, as I see it, to open a path along which the
reader (whether a student or an independent reader) can get a theoretical and
practical understanding of the fundamental techniques for making music with
a computer, to make this process as direct and straightforward as possible, and
to require a minimum of specialized knowledge in advance.

VIII Foreword

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

IXPure Data: Electronic Music and Sound Design - Introduction

Returning to the historical context into which I’ve thrown this introduction, one
last point is worth thinking about. What did composers in the decades from
1957 to about 1983 see in the computer as a music-making tool? I think the
computer workflow of that day was one that was familiar to Western-trained
composers of that time, with their attention to planning, organization, and
above all detailed manipulation of numbers and sets, and their ability to work
for months or years on a project without getting to hear the music itself until
afterward (if even then). Most humans would be discouraged from working
like that. Today, on the other hand, the sound pours from your loudspeakers
while you’re making it up. In the world of electronic music, the special role
of “composer” disappears, or perhaps more precisely, the roles of composer,
performer, and listener have converged. Music making is a much freer and
wider-ranging activity than it was before the advent of electronics, mediated
as they are almost always today by computers. There are many possibilities out
there to explore, and studying both the theory and the practice of audio
programming is the best first step of the way.

(Miller Puckette is the original author of Max and Pure Data)

IXPure Data: Electronic Music and Sound Design - Foreword

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

X Introduction

INTRODUCTION
This is the first of a series of three volumes dedicated to digital synthesis and
sound design. The next volumes will cover a range of additional topics in the
realm of sound synthesis and signal processing, including dynamics processing,
delay lines, reverberation and spatialization, digital audio and sampled sounds,
MIDI, non-linear techniques (such as AM, FM and wave terrain synthesis),
granular synthesis and granulation, analysis and resynthesis, convolution, and
computer-aided composition.

PREREQUISITES
This first volume will be useful to several levels of reader. Prerequisites for
its study are minimal, and include nothing more than rudimentary musical
knowledge such as an understanding of notes, scales, and chords, as well as
basic computer skills such as saving files, copying and pasting text.
The volume should be equally useful for self-learners and for those studying under
the guidance of a teacher. It is laid out as chapters of theoretical background
material that are interleaved with chapters that contain practical computer
techniques. Each pair of chapters stands together as a unit. We suggest that
curricula follow this structure, first touching on theory, then following up with
hands-on material, including computer activities. The theoretical chapters are not
intended to substitute for more expansive texts about synthesis; they provide,
instead, an organic framework for learning the theory that is needed to invent
sounds on the computer and to write signal processing programs.

TIME NEEDED FOR STUDY
The time needed for this material will, of course, vary from person to person.
Nonetheless, here are two estimates to help in planning, one for learning under
the guidance of an expert teacher, and the other for self-learners:

Self-learning
(300 total hours of individual study)

Chapters	 Topic	 Total hours
1T+1P+IA	 Sound synthesis 	 100
2T+2A	 Additive Synthesis	 60
3T+3P+IB	 Subtractive Synthesis and Filtering	 110
4T+4P	 Control Signals 	 30

Teacher-assisted learning
(60 hours of classroom-based learning + 120 hours of individual study)

Chapters	 Topic	 Lessons	 Feedback	 Studio time	 Total hours
1T+1P+IA	 Sound synthesis 	 16	 4	 40	 60
2T+2P	 Additive Synthesis	 10	 2	 24	 36
3T+3P+IB	 Subtractive Synthesis	 18	 4	 44	 66
4T+4P	 Control Signals	 5	 1	 12	 18

X Introduction

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

XIPure Data: Electronic Music and Sound Design - Introduction

THE INTERACTIVE EXAMPLES
The path laid out in the theoretical sections of this book is meant to be
accompanied by numerous interactive examples, which are available on the
website at the support page for this text. Using these examples, the reader
can immediately refer to the example sounds being discussed, as well as
their design and elaboration, without having to spend intervening time on
the practical work of programming. In this way, the study of theory can be
immediately connected to the concrete experience of sounds. The integration
of understanding and experience in the study of sound design and electronic
music is our objective. This principle is the basis for the entire set of three
volumes, as well as for future online materials that will help to update,
broaden, and clarify the existing text.

THEORY AND PRACTICE
As we just said, the teaching approach for this book is based, first and
foremost, upon an interplay between theory and practice, which we believe
is indispensable. One of the glaring problems in the field of digital sound
processing is the knowledge gap that exists between experts in theory (who
often have neither the time nor the need to tackle concrete technical problems
that are so relevant to the actual practice of creating sound) and those
enthusiasts, much more numerous, who love to invent and modify sounds
using their computers. These enthusiasts persevere, despite gaps in their
theoretical awareness and/or in their understanding of how sounds may be
modified within the rigid confines forced upon them by their specific software.
It is our intention help these users of music software to acquire the deeper
understanding that will take them beyond the confines of specific software to
access the profound power inherent in the medium.

TEACHING APPROACH AND METHOD OF THIS BOOK
On the basis of the problems and concepts described above, we have tried
to fill the information gap by continuing in the direction already begun
with the book titled “Virtual Sound” (Cipriani and Bianchini, 2000), also
dedicated to sound synthesis and signal processing. The innovations in
this new text are substantial, with regard to both the examples provided
and a completely different teaching approach. Because very little academic
literature is available concerning methods for teaching electronic music, we
have approached the problem directly, considering various promising ways
to plumb the depths of the subject material. This exercise has led us to an
organic teaching method, in which we adopt various ideas and techniques
from foreign language textbooks in order to develop a more context-
based, open-ended and interactive concept of teaching and learning. In
addition to interactive examples, we have included “learning agendas”
that detail the specific objectives for each chapter, that include listening
and analysis activities, exercises and tests, glossaries, and suggestions
for recordings to which to listen. The practical chapters of the book also
include many other new features and activities, including the correction,
completion, implementation, debugging, testing and analysis of algorithms,
the construction of new algorithms from scratch, the replacement of parts

XIPure Data: Electronic Music and Sound Design - Introduction

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

XII Introduction

of pre-built algorithms, and reverse engineering (in which the reader listens
to a sound and then tries to invent an algorithm to create a similar sound).
These activities and tasks are intended to activate the knowledge and
practical skills of the reader. When learning a foreign language, there is a
gap between what one knows and what one is able to use in practice. It is
common for a student’s passive vocabulary (the total number of terms that
the student can recognize) to be much larger than the active vocabulary that
he or she can actually use while speaking or writing. The same is true of
a programming language: a student can understand how algorithms work
without being able to build them from scratch. The activities in this book
that concentrate on replacing parts of algorithms, completing unfinished
algorithms, correcting algorithms with bugs, and reverse engineering, have
been included in order to pose problems to which the reader is encouraged
to find his or her own solutions, causing the learning process to become
more active and creative.
When learning a foreign language, students are given replacement exercises
(e.g. “replace the underlined verb in the following phrase: I wish I could go
out”), correction exercises (e.g. “correct the following phrase: I want to went
home”), and sentences to be completed (e.g. “I’d like to ... home”). In this
context, it is vitally important for the student to work at these activities in order
to avoid an excessively passive approach to learning. Our approach, likewise, not
only involves interactions between the perception of sounds and the knowledge
deriving from reading the book and doing the practical activities, but also
interactions between these two factors and the user’s own skills and creativity.

This method is not based on a rigidly linear progression, but is rather a
network that enables the reader to acquire knowledge and practical skills
through an interaction of four separate dimensions: learning of the theoretical
concepts, learning to use the Pure Data program, interacting with example
material, and constructing algorithms.

This text is based on the book “Electronic Music and Sound Design – Theory
and Practice with Max 8” by A. Cipriani and M.Giri, whose structure and
educational vocation are maintained. The section dedicated to practice, where
the techniques described in the theory chapters are exemplified, refers to the
software Pure Data, which (just like Max) was created by Miller Puckette, and
shares the general settings and many other features with Max.

Pure Data is a visual programming language, that allows you to connect
graphic objects. These objects, which can perform calculations or process
audio signals, can be connected to create very complex entities such as
synthesizers and signal processors, or even authentic automatic sound devices.

Pure Data is free and open source. It can be downloaded for free and used on
the most common operating systems. You can also modify the source code
in order to create custom versions of the software. This set of features has
led to the birth of an ever-growing community of musicians, programmers,
and enthusiasts, and even to some interesting projects, such as Pd-extended

XII Introduction

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

XIIIPure Data: Electronic Music and Sound Design - Introduction

(which, unfortunately, is no longer updated, and that, before ceasing to
exist, was the reference version of the community). Hence, this book deals
with the original version of Pure Data (sometimes referred to as Pd-vanilla),
which is currently kept up-to-date and supported by Miller Puckette himself.
The advantage of the vanilla version is that it ensures the compatibility with
every platform, and most importantly, a longer continuity over time than the
alternative versions.

The vanilla version of the software contains a rather small native-object library,
and for this reason this book is accompanied with a library of abstractions
(which are objects created within the environment, i.e.: made up of already-
existing Pd objects) that allows you to boost the features of the program and
to easily perform all those operations that would otherwise be really difficult
to carry out (especially for a newbie who has just started learning the basics).

PRACTICAL INFORMATION
Many indispensable materials accompany this book, among them, interactive
examples, patches (programs written in Pure Data), sound files, programming
libraries, and other materials.
These can be found at the support page for this text.

Interactive Examples
During the study of a theory chapter, before moving on to the related practical
chapter, it will help to use the interactive examples or video examples. Working
with these examples will aid in the assimilation of the concepts raised by the
theory.

Example Files
The example files (patches), are created to be used with Pure Data, which is
freely downloadable from Miller Puckette’s site http://msp.ucsd.edu/software.
html. As we have already mentioned, the book deals with the vanilla version
(without extensions) of Pure Data.

Alternating Theory and Practice
In this book, theoretical chapters alternate with chapters which are geared
towards programming practice. Because of this, the reader will find himself
taking on all of the theory for a given chapter before passing to the
corresponding practical chapter. An alternative to this approach would be to
read a single section from the theory, and then go directly to the corresponding
section of the practical chapter. (For example, 1.1T and 1.1P, then 1.2T and
1.2P, etc.

The Interludes
Note that there are two “technical interludes”, the first between the first and
second chapters, and the second between the third and fourth chapters. These
interludes, named respectively “Interlude A” and “Interlude B”, are dedicated
specifically to the Pure Data language. They don’t relate directly to any of the
theoretical discussions, but they are very necessary for following the code

XIIIPure Data: Electronic Music and Sound Design - Introduction

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

XIV Introduction

traced out in the book. After having tackled the theory and practice of the first
chapter, before moving on to the second chapter, it will benefit the reader to
study Interlude A. Likewise, Interlude B is meant to be studied between Chapters
3 and 4.

Learning Pure Data
Learning Pure Data (and, in general, learning synthesis and sound processing)
requires effort and concentration. In contrast to much commercial music
software, Pure Data provides flexibility to the programmer, and this design
choice provides those programming with Pd many alternative ways to build a
given algorithm. To benefit from this the recommendations of the book and
to code in a systematic way. Pd is a true musical instrument, and learning to
play it should be approached as one would approach the study of a traditional
instrument (such as a violin). As with any instrument, the reader will find it
necessary to practice regularly, and to stay sharp on basics while gradually
acquiring more complex techniques. By approaching the software in this way,
fundamental techniques and technical insights can be retained once they have
been acquired.

Bibliography
The decision was made to limit the bibliography in this book to a list of only the
most absolutely essential reference works, and, of course, a list of the books and
articles cited in the text. A more comprehensive bibliography is available online.

Before Beginning
To begin working with this book, you will need to download the interactive
programming examples, which you will find at the support page for this text. While
reading the theory chapters, you will find constant references to the examples
contained in this downloadable archive. To work interactively with the programming
chapters of the book, you will need to download the Virtual Sound Macro Library
from the support page mentioned above. It will also be necessary to install Pure
Data, which is available at Miller Puckette’s website: http://msp.ucsd.edu/software.
html.

The support page for this text contains detailed instructions regarding how to install
Pd and the macro library correctly. Always check the support page for patches (Pd
programs) related to the practice chapters of this book, as well as the audio files for
the reverse engineering exercises.

Comments and Suggestions
Corrections and comments are always welcome.
Please contact the authors via email at:
Francesco Bianchi	 frabianchi72@gmail.com
Alessandro Cipriani 	 a.cipriani@edisonstudio.it
Maurizio Giri			 maurizio@giri.it

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

XVPure Data: Electronic Music and Sound Design - Introduction

THANKS
We wish to thank Gabriele Cappellani, Vincenzo Core and Simone Micheli for
their patience and long hours of work, and Andrew Bentley, Richard Dudas and
Miller Puckette for their generosity and support.

DEDICATIONS
This text is dedicated to Riccardo Bianchini, who would have wanted to
participate in the production of this teaching text, but who, unfortunately,
passed away before the work began. We have collected some of his materials,
revised them, and cited them in a few of the sections on theory. This seemed
to be a way to have Riccardo still with us. A particular thanks goes to Ambretta
Bianchini for her great generosity and sensitivity during these years of work.

Enjoy the reading!
Francesco Bianchi, Alessandro Cipriani and Maurizio Giri

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

XVI Introduction

LIST OF SYMBOLS

• ACTIVITIES AND INTERACTIVE EXAMPLES

• INTEGRATED CROSS-FUNCTIONAL PROJECTS

• FUNDAMENTALS CONCEPTS

• TECHNICAL DETAILS

• TEST WITH SHORT ANSWERS

8

O

abc

�

✍

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

INTRODUCTION TO SOUND SYNTHESIS

1.1	 SOUND SYNTHESIS AND SIGNAL PROCESSING
1.2	 FREQUENCY, AMPLITUDE, AND WAVEFORM
1.3	 CHANGING FREQUENCY AND AMPLITUDE IN TIME: ENVELOPES AND
	 GLISSANDI
1.4	 THE RELATIONSHIP BETWEEN FREQUENCY AND MUSICAL INTERVAL
1.5	 INTRODUCTION TO WORKING WITH SAMPLED SOUND
1.6 INTRODUCTION TO PANNING

1T

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
• Basic skills in using computers

(operating a computer, managing files and folders, audio formats, etc.)
•	Minimal knowledge of music theory (semitones, octaves, rhythms, etc.)

LEARNING OBJECTIVES
Knowledge

•	To learn about the signal paths one uses in sound synthesis and signal processing

• To learn about the principal parameters of sound and their characteristics

• To learn how pitch and sound intensity are digitally encoded

• To learn about musical intervals in different tuning systems

• To learn about audio file formats

Skills

•	To be able to hear changes of frequency and amplitude and to describe their

characteristics

• To be able to hear the stages of the envelope of a sound or a glissando

CONTENTS
•	Computer-based sound synthesis and signal processing

•	Theory of timbre, pitch, and sound intensity

•	Theory of glissandi and amplitude envelopes

•	The relationship between frequency, pitch, and MIDI encoding

•	Introduction to sampled sound

•	Introduction to panning

ACTIVITIES
•	Interactive examples

TESTING
•	Questions with short answers

•	Listening and analysis

SUPPORTING MATERIALS
•	Fundamental concepts

•	Glossary

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

1.1 SOUND SYNTHESIS AND SIGNAL PROCESSING

The use of computers in music has enabled composers and musicians to manage
and manipulate sound with a precision and a freedom that is unthinkable with
acoustic instruments. Thanks to the computer, it is now possible to model
sound in every way imaginable. One might say that while the traditional
composer working with traditional instruments composes using sounds, the
electronic composer composes the sounds themselves.

The same thing has happened in animation graphics: thanks to the computer it is
now possible to create images and film sequences that are extremely realistic, and
that would have been impossible to produce by other means. Almost all cinematic
special effects are now produced with computers; it is becoming commonplace
to find virtual entities sharing the screen with flesh-and-blood actors.

These newfound possibilities are the result of passing from the analog world
into the digital world. The digital world is a world of numbers. Once an image or
a sound has been converted into a sequence of numbers, those numbers can be
subjected to transformations, since numbers are easily and efficiently analyzed
and manipulated by computers. The process of digitization, precisely defined as
that of transforming an item of data (a text, a sound, an image) into a sequence
of numbers, is the technique that makes this all possible.1

This text will concentrate on two subjects: sound synthesis and signal processing.
Sound synthesis means the electronic generation of sound. In practice, you will
find that the possibilities for creating sound are based largely on a few selected
parameters, and that you can obtain the sonorities you seek by manipulating these
parameters.

Signal processing in this context means the electronic modification of a sound,
whether the sound of a recorded guitar or a sound generated by using a particular
type of sound synthesis.

DIGITAL SYNTHESIS OF SOUND
When generating sound using a programming language designed for sound
synthesis and signal processing, we specify a desired sound by constructing
a “virtual machine” of our own design (realized as an algorithm2) , and by
specifying a series of instructions which this machine will use to create the
sound.

Once we have written this sequence of instructions, the programming
language we’re using (Pure Data for example) will execute our instructions
to create a stream of digital data in which all of the characteristics of the

1 We will broaden this concept during the course of the chapter.
2 An algorithm is a sequence of instructions, written in a programming language, that enables a
computer to carry out a defined task.

3Chapter 1T - Introduction to sound synthesis

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

sound or sounds that we have specified will be rendered.3 Between the time
that this stream of digital data is generated and the time that we actually
hear the sound, another fundamental operation occurs. The computer’s
audio interface transforms the digital data into an electrical signal that,
when fed to an amplifier and loudspeakers, will produce the sound. The
audio interface, in other words, converts the digital data into an analog
voltage (a process often abbreviated as “D/A conversion”), allowing us to
hear the sounds that are represented by the stream of digital data. (fig. 1.1).

Fig. 1.1 Realtime synthesis

We can also capture the stream of data to our hard disk as an audio file, which
will enable us to hear the result of our algorithmic processing as many times as
we’d like.

When the stream of data goes directly to the audio interface as it is processed,
so that there are only few milliseconds between the processing and the listening
of the synthesized sound, one speaks of realtime synthesis. When the
processing of sound is first calculated entirely and saved to an audio file (which
can be listened to later) one speaks of non-realtime or offline synthesis. (In
this context the latter term is not a technical one, but it is widely used.)

Fig. 1.2 Non-realtime synthesis and listening as separate actions

3 In numeric form.

4 Theory - Section 1.1 - Sound synthesis and signal processing

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

SIGNAL PROCESSING

Signal processing is the act of modifying a sound produced by a live source, for
example through a microphone, or from a pre-existing audio file already stored
in your computer. It is possible to do signal processing in various ways. We see
three possibilities:

Pre-existing sound, saved separately as a sound file which is processed offline

The sound of a flute, for example, is recorded to disk using a microphone
connected to the audio interface, which performs the analog-to-digital
conversion.4 We implement an algorithm in which we specify the sonic
modifications to be made to the original audio file. Once executed, this program
will create a new audio file containing the now-modified sound of the flute.
We can then listen to the processed sound file at any time by playing the file
(through the audio interface).

Fig. 1.3 Example of offline sound processing

Pre-recorded sound, which is then processed in realtime

A sound, already recorded in the computer as in the first example, is streamed
from a pre-existing sound file. The processing program, while executing
commands to modify the streamed sound file, also routes the processed sound
file directly to the audio interface for listening. The program, although it is
processing in real time, can also record the resulting stream into an audio file
for later listening, as in fig. 1.4.

Realtime sound, processed immediately

Sound comes from a live source. As in the preceding example, the processing
program, executing commands, routes the processed sound directly to the
audio interface.

4 A transformation of a physical sound into a sequence of numbers.

5Chapter 1T - Introduction to sound synthesis

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

Fig. 1.4 Example of realtime sound processing on pre-existing sound

Naturally, in this case also, the program can record the processed sound as an
audio file, as shown in figure 1.5.

Fig. 1.5 Example of realtime sound processing on live sound

We define a DSP system as an integrated hardware and software system
(computer, audio interface, programming language.) that enables the
processing and/or synthesis of sound. The term DSP is an acronym for digital
signal processing.

REALTIME VERSUS OFFLINE PROCESSING
We have seen that both synthesis and signal processing can occur either in
realtime or offline. At first glance, the more valuable approach would seem
to be realtime, because this method provides immediate feedback and an
opportunity to weigh the appropriateness of the algorithm being evaluated,
as well as to tune and tweak the code if necessary.

What cause is served, then, by deferring processing to offline status?

The first reason is simple: to implement algorithms that the computer cannot
execute in realtime, due to their complexity. If, for example, the computer
needs two minutes of time in order to synthesize or to process one minute

6 Theory - Section 1.1 - Sound synthesis and signal processing

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

of sound, one has no alternative but to record the result to disk in order to
be able to listen to it without interruption once the processing has finished.
At the dawn of computer music, all of the processing done for synthesis and
effects was performed offline, because the processing power to do realtime
calculation did not exist. With the increasing power of computers, it began to
be possible to perform some processing directly in realtime, and, over time,
the processing power of personal computers grew enormously, enabling them
to do most synthesis and processing in realtime. But as computing power
continues to grow, new possibilities are continually imagined, some of which
are so complex that they can only be achieved offline. The need for offline
processing will never disappear.
There also exists a second reason: a category of processing that is conceptually
offline, independent of the power of the computer. If we want, for example,
to implement an algorithm that, given a sequence of musical sounds from an
instrument, will first break the sequence down into singles notes and then
reorder those notes, sorting from the lowest to the highest pitch, we must do
this processing offline. To realize this algorithm, we would first need the entire
sequence, most likely recorded into an audio file in a way that the computer
could analyze; the algorithm could then separate the lowest note, then the
next-lowest, and so forth until finished. It should be obvious that this kind of
analysis can only take place offline, only after the completion of the entire
sequence; a computer that could handle this kind of algorithm in realtime
(that is to say, while the instrument was playing the sequence) would be a
computer so powerful that it could see into the future!
A final advantage of non-realtime processing is the prospect of saving time!
Contrary to what one might initially think, realtime processing is not the
fastest computing speed possible. We can imagine, for example, that we
might modify a 10 minutes sound file using a particular type of processing.
If this modification were to happen in realtime, it would obviously take 10
minutes, but we might also imagine that our computer had enough power to
render this processing offline in 1 minute. In other words, the computer could
render the calculations for this particular hypothetical operation at a speed 10
times faster than realtime. Offline processing, in this case, would be far more
convenient than realtime processing.

1.2 FREQUENCY, AMPLITUDE, AND WAVEFORM
Frequency, amplitude and waveform are three basic parameters of sound.5 Each
one of these parameters influences how we perceive sound, and in particular:

a) our ability to distinguish a lower pitch from a higher one (frequency)
b) our ability to distinguish a loud sound from a soft sound (amplitude)
c) our ability to distinguish different timbres (waveform)

5 We refer here to the simplest forms of sound. (i.e. we will later see how the parameter of timbre
actually depends on several factors.)

7Chapter 1T - Introduction to sound synthesis

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

Let’s look at a table (taken from Bianchini, R., 2000) of the correspondences
between the physical features of sound, musical parameters, and perceived
sonority.

CHARACTERISTIC PARAMETER PERCEPTUAL SENSATION

Frequency Pitch High  Low

Amplitude Intensity Forte  Piano

Waveform Timbre Sound color

TABLE A: correspondences between sound characteristics, musical parameters
and perceived sonority.

FREQUENCY
Frequency is the physical parameter that determines the pitch of a sound, that
is, it is the feature that allows us to distinguish between a high-pitched sound
and a low-pitched sound. The range of frequencies that is audible to humans
extends from about 20 to about 20,000 hertz, that is to say, from about 20 to
about 20,000 cycles per second.6 (We’ll define cycles per second in a moment.)
The higher the frequency of a sound, the higher its pitch will be.
But what do we mean by hertz or “cycles per second”? To understand this, we
refer to the definition of sound given by Riccardo Bianchini:

“The term ‘sound’ signifies a phenomenon caused by a mechanical perturbation
of a transmission medium (usually air) which contains characteristics that can be
perceived by the human ear.7 Such a vibration might be transmitted to the air,
for example, by a vibrating string (see fig. 1.6). The string moves back and forth,
and during this movement it pushes the molecules of air together on one side,
while separating them from each other on the other side. When the motion of
the string is reversed, the molecules that had been pushed together are able to
move away from each other, and vice versa.
The compressions and expansions (that is to say, the movements of air molecules)
propagate through the air in all directions. Initially, the density of molecules in

6 The highest frequency that someone can hear varies from individual to individual. Age is also a
factor. As we get older, our ears become less sensitive to high frequencies.
7 There are many theories about the nature of sound: Roberto Casati and Jérôme Dokic argue that
the air is a medium through which the sound is transmitted, but that sound itself is a localized
event that resonates in the body, or in the mechanical system that produces the vibration. (Casati,
R., Dokic, J. 1994). Another point of view is expressed by Frova: “with the term ‘sound’, one
ought to signify the sensation, as manifest in the brain, of a perturbation of a mechanical nature,
of an oscillatory character, which affects the medium interposed between source and listener.”
(Frova, A., 1999, p.4).

8 Theory - Section 1.2 - Frequency, amplitude, and waveform

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

air is constant; each unit of volume (for example, a cubic centimeter) contains
the same number of molecules.

Fig. 1.6 Vibration of a string

This density can be expressed as a value called pressure. Once the air is
disturbed, the pressure value is no longer constant, but varies from point to
point, increasing where molecules are pushed together and decreasing where
the density of the molecules is rarefied (see fig. 1.7).

Fig.1.7 Compression and rarefaction of air molecules

Pressure can be physically studied either in terms of space (by simultaneously
noting the pressure at multiple points at a given moment), or from the point of

9Chapter 1T - Introduction to sound synthesis

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

time (by measuring the pressure at a single location as a function of time). For
example, we can imagine that if we were located at a specific point in space,
we might observe a series of condensations and rarefactions of the air around
us, as in figure 1.8.

Fig.1.8 A graphical representation of compression and rarefaction

At time t-1, which occurs immediately before t0, the air pressure has its normal
value, since the cyclic disturbance has not yet reached our point of observation.
At instant t0, the disturbance arrives at our observation point, pressure starts to
rise, reaches a maximum value at time t1, and then decreases until it returns to
normal at time t2. It continues to decline, reaching its minimum value at t3, after
which pressure returns to its normal value at t4; the pattern then repeats. What
has been described is a phenomenon called a cycle, and an event that always
repeats in this way is called periodic.8 The time required to complete a cycle is
said to be the period of the wave, which is indicated by the symbol T and is
measured in seconds (s) or in milliseconds (ms). The number of cycles that are
completed in a second is defined as frequency, and is measured in hertz (Hz) or
cycles per second (cps).
If, for example, a sound wave has period T = 0.01s (1/100 of a second), its
frequency will be 1/T = 1/0.01 = 100 Hz (or 100 cycles per second).”(ibid)

While examining figure 1.9, listen to the sounds of Interactive Example 1A.9
We can see (and hear) that increasing the number of cycles per second (Hz)
corresponds to making a sound higher in pitch.

8 Mathematically a waveform is said to be periodic if it is repeated regularly for an infinite time. In
the practice of music, of course, we can satisfy ourselves with periods much shorter than infinity!
We will say that a wave is “musically periodic” when it displays enough regularity to induce a
perception of pitch that corresponds to the period of the wave. We’ll discuss this issue in more
detail in Chapter 2.
9 Please note that interactive examples and other supporting materials to the book can be found
on the website at the support page for this text

pr
es

su
re

10 Theory - Section 1.2 - Frequency, amplitude, and waveform

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

Fig.1.9 Four sounds of different frequencies

INTERACTIVE EXAMPLE 1A • FREQUENCY

From the instant that it propagates in space, a wave has a length that is inversely
proportional to its frequency. Let’s clarify this concept: the speed of sound in
air (the speed at which waves propagate from a source) is about 344 meters
per second.10 This means that a hypothetical wave of 1 Hz would have a length
of about 344 meters, because when it has completed one cycle, one second
will have passed, and during this second, the wavefront will have traveled 344
meters. A wave of 10 Hz, however, completes 10 cycles in a single second,
which fill 344 meters with an arrangement of 10 cycles of 34.4 meters each;
each cycle physically occupies a tenth of the total space available.

10 For the record, this speed is reached when the temperature is 21°C (69,8°F). The speed of
sound is, in fact, proportional to the temperature of the medium.

am
p

am
p

am
p

am
p

time in msec

100 Hz

200 Hz

1000 Hz

4000 Hz

8

11Chapter 1T - Introduction to sound synthesis

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

By the same reasoning, a 100 Hz wave has a wavelength of 3.44 meters.
We see that frequency decreases with increasing wavelength, and the two
quantities are, as we have said, inversely proportional.

AMPLITUDE
The second key parameter for sound is amplitude, which expresses information
about variations in sound pressure, and which allows us to distinguish a loud
sound from one of weaker intensity.

A sound pressure that is weaker than the human ear can hear is said to lie
below the threshold of hearing, while the maximum sound pressure that can
be tolerated by the human ear is defined as the threshold of pain. Exposure
to sounds above the threshold of pain results in physical pain and permanent
hearing damage.

In the wave depicted in figure 1.10, the maximum pressure value is called the
peak amplitude of the sound wave, while the pressure at any point is called
instantaneous amplitude.

When we generically refer to the “amplitude of a sound”, we are referring to
the peak amplitude for the entire sound (see figure 1.10).

Fig.1.10 Amplitude of a sound

If we show a wave that has a peak amplitude of 1, as in the example, we will
see a wave that starts from an instantaneous amplitude of 0 (at time t0), rises
to 1 at time t1, returns to pass through 0 at time t2, continues to drop until it
reaching its minimum value of -1 at time t3, after which it rises again to the value
0 at time t4, and so on. When we represent amplitude this way, we are looking
at it as a function of time. The process of digitization transforms such a function
into a series of numbers between 1 and -1, and the values thus obtained can be
used to graph the wave form (fig. 1.11). The relative position that a wave cycle

am
pl

itu
de

12 Theory - Section 1.2 - Frequency, amplitude, and waveform

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

occupies at a given instant is called its phase, and we will explore the concept
of phase in more detail in Section 2.1.

Fig. 1.11 Digital representation of a waveform

Comparing the graph to the real wave (i.e. the physical succession of air
compressions and rarefactions), we can see that compression corresponds to
positive numbers, rarefaction to negative numbers, and that the number 0
indicates the original stable pressure. (The absence of any signal is, in fact,
digitally represented by a sequence of zeros.) Values representing magnitude
(or amplitude values) are conventionally expressed as decimal numbers that vary
between 0 and 1. If we represent the peak amplitude with a value of 1, we will
have oscillations between 1 and -1 (as in the previous example), whereas if we
were to use 0.5 as the peak amplitude (defined as half of the maximum possible
amplitude), we would have oscillations between the numbers 0.5 and -0.5, and
so on. (See figure 1.12.)

Fig.1.12 Two sounds with differing amplitudes

pr
es

su
re

 v
al

ue
s

time in msec

am
p

am
p

time in msec

13Chapter 1T - Introduction to sound synthesis

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

If the amplitude of a wave being output by an algorithm exceeds the maximum
permitted by the audio interface (a wave, for example, that ranges between
1.2 and -1.2, being output by an interface that cannot accurately play values
greater than 1), all of the values exceeding 1 or falling below -1 will be limited
respectively to the maximum and the minimum value: offending values will be
“clipped” to the values 1 or -1. Clipped waves are deformed, and because of
this, their sound is distorted11 (see fig. 1.13).

Fig.1.13 A “clipped” waveform

In most software, besides using “raw” numbers to represent amplitude, it is
also possible to indicate levels by using dBFS: the symbol dB indicates that the
level is measured in deciBels, and the acronym FS stands for Full Scale – thus
the entire abbreviation can be read as “deciBels relative to full scale”. Whereas
raw amplitude measurements represent the difference between a sound
pressure measurement and some normal pressure, dBFS is instead defined as
the relationship of a sound pressure at a given moment to a reference pressure
(which is typically 0 dB in digital audio). 0 dBFS represents the highest level of
accurately reproducible pressure (corresponding to the maximum amplitude),
and lower levels are indicated by negative values.

Using this scale, the raw amplitude 1, as used in the preceding examples,
would correspond to 0 dBFS, while a magnitude of 0.5 would correspond to
approximately -6 dB, and an amplitude of 0.25 would fall still lower on the
scale at approximately -12 dB. It follows that a reduction of 6 dB corresponds
to a halving of the amplitude, whatever the level may be. This kind of relative
measurement is very useful because you can use it while working with sounds
of unknown loudness.

11 As we will see in Section 5.1, harmonic distortion is the modification of a signal due to the
alteration of its waveform, which results in the introduction of spectral components that are not
found in the original signal.

am
pl

itu
de

time in msec

14 Theory - Section 1.2 - Frequency, amplitude, and waveform

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

No matter how strong the signal, we know that in order to double it, it will need
to increase by 6 dB. Measurement in dB, in contrast to other measurements,
is not absolute but relative; it allows us to measure and manipulate the
relationship between one sound pressure level and another without knowing
their absolute magnitudes.

Here is a useful rule to remember: to reduce the magnitude of a signal by a
factor of 10 (in other words, to reduce it to one tenth of the original amplitude)
we must reduce the signal by 20 dB. Likewise, to increase a signal tenfold, raise
it by 20 dB. It follows that an increase of 40 dB would increase a signal by 100
times, 60 dB by 1000, etc. For a more detailed discussion of this, see “Technical
Details” at the end of this section.

Let’s look at a table relating raw amplitudes, normalized to a maximum value of 1,
to amplitudes measured in dBFS.

Amplitude dBFS
1 0

0.5 -6
0.25 -12

0.125 -18
0.1 -20

0.01 -40
0.001 -60

0.0001 -80
0 -inf

TABLE B: relationship between raw amplitude and dBFS

As we said, the deciBel is not an absolute magnitude, but is instead a relationship
between two quantities, and so there is no absolute measure of 0 dB. Instead,
you are free to define 0 dB as you wish, to use as a benchmark against which
you will measure a given sound pressure. Unlike in digital audio, where we will
usually specify that 0 dB is the maximum value reproducible in a given system,
analog acousticians often use 0 dB to represent the minimum level for their
amplitude scale, with positive numbers representing louder values.

The following list itemizes, in an approximate way, pressure levels for some
common environments (measured in dB SPL at 1 meter of distance)12 .
Amplitude in this table, as you can see, is not represented using 0 dB as the
maximum pressure level (as it would be in digital audio, where the amplitudes
below the maximum possess negative values, such as -10 dB or -20 dB). On the
contrary, these amplitudes are represented using 0 dB as a reference point for
the “weakest perceptible sound,” leaving all other values to be positive numbers
greater than 0.

12 The acronym SPL stands for Sound Pressure Level.

15Chapter 1T - Introduction to sound synthesis

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

 140 the threshold of pain
 130 a jet taking off
 120 a rock concert
 110 a symphony orchestra fortissimo
 100 a truck engine
 90 heavy traffic
 80 a retail store
 70 an office
 60 normal conversation
 50 a silent house
 40 a night in the countryside
 30 the rustle of leaves
 20 wind
 10 a light breeze
 0 the weakest perceptible sound

INTERACTIVE EXAMPLE 1B • AMPLITUDE

Fig.1.14 Four sounds with their amplitudes progressively doubled

8

am
p

am
p

am
p

am
p

time in msec

16 Theory - Section 1.2 - Frequency, amplitude, and waveform

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

From the psychoacoustic point of view, the intensity of a sound influences the
perception of its pitch. Without going into too many details, it suffices to note
that above 2,000 Hz, if we increase the intensity of a sound while maintaining
fixed frequency, we will perceive that the pitch is rising, while below 1,000 Hz,
as intensity increases, there will be a perceived drop in the pitch. On the other
hand, frequency also influences our perception of its intensity: the sensitivity of
the ear to volume decreases at higher frequencies, increases in the midrange,
and decreases greatly at low frequencies. This means that the amplitudes of two
sounds must differ, depending on their frequencies, in order to produce the
same perceived sensation of intensity. A low sound needs more pressure than
is required for a midrange sound to register with the same impact.
There is a graphical representation of the varying sensitivity of the ear to
different frequencies and sound pressures. In figure 1.15 we see this diagram,
which contains isophonic curves that represent contours of equal loudness.
The vertical axis indicates the level of pressure in dB, while the horizontal axis
represents frequency. The curves are measured using a unit called a phon13
and indicate, within the audible frequency range, the sound pressure needed
to produce equal impressions of loudness for a listener.14

Fig. 1.15 Diagram of equal loudness contours (ISO 226:2003)

13 The phon is a measure of perceived level of intensity which takes psychoacoustics into account.
1 phon is equal to 1 dBFS at a frequency of 1000 Hz.
14 The diagram of equal loudness contours is named after H. Fletcher and W.A. Munson, who
created the chart used for many years in psychoacoustic experiments all over the world. Recently,
this diagram has been refined, and the new measures have been adopted as a standard by the
International Organization for Standardization as ISO code 226:2003 (see fig. 1.15).

So
un

d
Pr

es
su

re
 L

ev
el

 (d
B

SP
L)

(threshold)

(estimated measurements)

17Chapter 1T - Introduction to sound synthesis

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

1000 Hz was chosen as the reference frequency for the phon, because at this
frequency, a measurement in phon and one in dB often coincide. (100 dB
corresponds to the feeling of 100 phon, 80 dB of 80 phon, etc.) For example,
if we examine the 60 phon curve, 60 dB of pressure are necessary at 1000 Hz
to produce a certain sensation, but as the pitch drops in frequency, more and
more dB are required to maintain the same sensation in the listener.

(...)

other sections in this chapter:

Waveform
The sinusoid
Other waveforms
Bipolar and unipolar waves
Logarithmic calculation of pressure sounds in db

1.3 	 CHANGING FREQUENCY AND AMPLITUDE IN TIME:
ENVELOPES AND GLISSANDI
Envelopes of acoustic instruments
Envelopes of synthetic sounds
Glissandi
Exponential and logarithmic curves

1.4 	 THE RELATIONSHIP BETWEEN FREQUENCY AND
MUSICAL INTERVAL

1.5 INTRODUCTION TO WORKING WITH SAMPLED SOUND
Digitalization of sound

1.6 	 INTRODUCTION TO PANNING

ACTIVITIES
• Interactive examples

TESTING
• Questions with short answers
• Listening and analysis

SUPPORTING MATERIALS
• Fundamental concepts
• Glossary

18 Theory - Section 1.2 - Frequency, amplitude, and waveform

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

SOUND SYNTHESIS WITH PURE DATA

1.1	 INSTALLATION AND FIRST STEPS WITH PD
1.2	 FREQUENCY, AMPLITUDE AND WAVEFORM
1.3	 CHANGING FREQUENCY AND AMPLITUDE IN TIME:

ENVELOPES AND GLISSANDI
1.4	 THE RELATIONSHIP BETWEEN FREQUENCY AND MUSICAL INTERVAL

AND OF AMPLITUDE TO SOUND PRESSURE LEVEL
1.5	 INTRODUCTION TO WORKING WITH SAMPLED SOUND
1.6 	INTRODUCTION TO PANNING
1.7	 SOME PD BASICS

1P

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
• Basic Computer Knowledge (operating a computer, managing files and folders,

audio input/output, etc.)
• Basic Knowledge of Music Theory (semitones, octaves, rhythm, etc.)
•	Contents of the Theory part of Chapter 1 (It is best to study one chapter at a

time, starting with the theory and the progressing to the corresponding chapter

on practical Pd techniques)

LEARNING OBJECTIVES
Skills

•	To be able to use all of the basic functions of Pd

•	To know how to synthesize sounds – both sequentially and simultaneously – using

sine wave oscillators, as well as square wave, triangle wave, and sawtooth wave

oscillators

•	To be able to control the amplitude, frequency, and stereo spatialization of

a sound continuously (using linear and exponential envelopes for glissandi,
amplitude envelopes, and the placement of sound in a stereo image)

•	To know how to generate random sequences of synthesized sounds

•	To be able to work with sampled sounds at a rudimentary level

Competence

•	To be able to successfully create your first sound etude based on the techniques

you have acquired in this chapter, and save your work as an audio file.

CONTENTS
• Sound synthesis and signal processing

•	The timbre, pitch and volume of sound

•	Glissandi and amplitude envelopes

•	Relationships between frequency, pitch, and midi

•	Introduction to working with sampled sound

•	Introduction to panning

• Some basics of the Pd environment

ACTIVITIES
•	Substituting parts of algorithms, correcting algorithms, completing algorithms,

analyzing algorithms, constructing new algorithms

TESTING
•	Integrated cross-functional project: reverse engineering

SUPPORTING MATERIALS
•	List of principal commands, list of native Pd objects, List of Virtual Sound library

Objects, list of messages for specific objects, glossary

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

1.1 INSTALLATION AND FIRST STEPS WITH PD
Installation and System Configuration
Before continuing to read this chapter, you will need to perform the following
operations:

1. Download and install Pure Data (Pd);
2. Download and install the Virtual Sound Library [for Pd];
3. Download the supporting materials created to accompany this text;
4. Configure your audio and MIDI system correctly.

The Pure Data1 software distribution can be downloaded via the website
http://msp.ucsd.edu/software.html, which includes versions of the software for
both Windows and Mac OSX (including 64-bit) operating systems. To install
the software, you simply need to execute the downloaded file and follow the
instructions that subsequently appear. Installation is slightly more complicated
on Linux operating systems, but Pd can generally be installed using the synaptic
application without any particular problem. For a more in depth discussion
about installing Pd on different operating systems, please refer to the document
EMASD_Pd_Installation.pdf which can be found on the website at the support
page for this text.

This text is based on Pd-0.51-4 (the latest stable version at the time of this
book’s publication), but the examples should also work with older versions back
to and including 0.45.

While you are on the above mentioned website, be sure to download the Virtual
Sound Library, which is absolutely essential for the proper functioning of the
examples used in this text. To install it correctly, follow these steps:

1. Download the file VirtualSoundLibraryPd.zip to your computer and
uncompress it. You should obtain a folder called Virtual_Sound_Library_
Pd;

2. Launch Pd and go to the Path section of the Pd/Preferences menu (Mac)
or File/Preferences menu (other operating systems). Click on New, and a
window will open allowing you to locate and select the Virtual_Sound_
Library_Pd folder. Once you have found and selected it, click on Ok.

3. Relaunch Pd.

1 If you search the internet, you will certainly come across several different versions of Pure Data,
including Pd-extended. Although this is one of the more widespread versions and includes a very
rich library of extensions, it was built upon an outdated version of Pure Data, unfortunately, and
consequently is no longer being maintained. This text is therefore based on the vanilla release of
Pure Data – the original version of the of the program which continues to be maintained by its
creator, Miller Puckette. The examples in this book will NOT all work with Pd-extended.

51Chapter 1P - Sound synthesis with Pure Data

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

52 Practice - Section 1.1 - Installation and first steps with Pd

If everything went well, Pd will now automatically locate the objects in the
Virtual Sound Library each time one of them is created by the user2. For more
information, refer to the related documents also found on the website.

The supporting materials for this volume have been gathered together and
compressed in the file EMASD_PD_MATERIAL_vol_1.zip. You can download
and uncompress it to any location on your computer of your choosing. From
there, you can open the files designed to accompany each of the chapters, as
well as those pertaining to the activities and reverse engineering exercises.

Audio Setup
To check that your audio is working correctly, perform the following steps:

1. Use the Media/Audio Settings menu to make sure that the Input Device
1 and Output Device 1 fields contain the name of your audio interface. If
not, then simply select your audio interface using the drop down menus
(for both input and output devices).

2. Use the Media/Test Audio and MIDI menu to open its window (shown
in figure 1.1). On the upper left hand side of this window, in the section
labeled ‘TEST TONES’, click on the selections labeled ‘80’ and ‘noise’.
Double check that your computer’s audio is not muted!

fig. 1.1: The built-in Pd window used to verify audio configuration/operation.

Now we can really begin!

2 The names of all the objects in the Virtual Sound Library begin with the prefix vs. followed by the
name of the object.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

53Chapter 1P - Sound synthesis with Pure Data

First Steps with Pd

Launch the Pd program and select the New option from the File menu (or type
<Command-n> on the Mac or <Control-n> on Windows or Linux3: An empty
Patcher Window, also known as a Canvas, will appear. This window is where
we will begin to assemble our first algorithm, which appears as a collection
of “boxes” in the window. These boxes, which contain strings of text and
numbers, are generically referred to as text boxes. A collection of text boxes
that are connected together is called a patch (a reference to the old world
of analog modular synthesizers that were programmed using physical cable
connections called patch cords).

After you open a new patcher window, type the key combination <Cmd/Ctl-1>,
or alternately go to the Put menu and select the Object option. This will create
a rectangle with dashed sides (as shown in figure 1.2), containing a blinking
cursor prompting you to type a string of alphanumeric characters.

fig. 1.2: A generic object box

This rectangle is called an object box. Now, go ahead and type the character
string ‘osc~ 440’4 into it and then move the cursor and click outside the
rectangle with the mouse. You have just created the [osc~] object (see figure
1.3) – a sine wave oscillator.

fig. 1.3: The [osc~] object

In Pd a character string without spaces is known as an atom. An atom can be
composed of a number, a literal string, or any kind of symbol. A Pd object is
made up of an initial atom that defines the object’s name, followed by one or
more atoms that are optionally supplied as creation arguments. In performing
the above actions, we have just created an object whose class is [osc~] with
a creation argument of 440.

3 On Mac OSX, hold the Command key (a) down and press ‘n’, or on Windows and Linux, press
‘n’ while holding the Control key down. This will be abbreviated as <Cmd/Ctl-n> from this point
on. Whenever you see this notation, use <Command> if you are using a Mac or use <Control> if
you are using Windows or Linux.
4 Note the character “~”, which is called a tilde, that follows the string ‘osc’. The tilde character is
almost always the last character in the name of objects used to process streams of digital audio; it
is an important naming convention in Pd. It will be important that you know where to find the tilde
on your keyboard, especially if you have a non-English one!.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

54 Practice - Section 1.1 - Installation and first steps with Pd

The little rectangles located on the upper and lower parts of the object are inlets
and an outlet, respectively, and we will soon see how they are used. If the object
you just created does not have them (i.e., if it does not resemble the one shown
in the figure), then there is some kind of problem, and you should read the FAQ
at the end of this section.

Now let’s create another object, [vs.gain~], which is part of the Virtual Sound
Library, and looks somewhat like a fader on a mixing board (see figure 1.4).

fig. 1.4: The [vs.gain~] object

Just as you did with [osc~], type <Cmd/Ctl-1> to create a generic object
box, then type the string ‘vs.gain~’ inside it, and click outside the box on an
empty part of the patcher window5. The graphical object which you have just
created falls into the GUI (Graphical User Interface) category, as it allows user
interaction via the mouse. Move this object so it is underneath the [osc~] and
connect the outlet of [osc~] to the left inlet of [vs.gain~] using a patch
cord connection.

To do this, you will need to perform a click, drag and drop action with the
mouse. First, move the mouse pointer (which looks like a hand with a pointing
finger) over the outlet of the [osc~] object (located at the left side of its
bottom edge), at which point the pointer will turn into a circle. Click and hold
down the mouse button, drag the pointer to the left inlet of [vs.gain~] (at
which point it will turn into a circle again), and release the mouse button. If you
did this correctly, the result should look similar to the two connected objects
shown in figure 1.5.

fig. 1.5: Connecting objects

5 If the object does not appear as shown, double-check to make sure you have typed its name
correctly. If you are still experiencing problems, the Virtual Sound Library may not be properly
installed, in which case you should go back to the beginning of this chapter and follow the
installation instructions carefully.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

55Chapter 1P - Sound synthesis with Pure Data

The connection from the oscillator to [vs.gain~] was made in order to
be able to adjust the oscillator’s volume. We now need to send the resulting
audio signal to an audio output.
We do this by creating a [dac~] object (shown in figure 1.6), positioning it
underneath [vs.gain~], and connecting the left outlet of [vs.gain~] to
both the left and right inlets of [dac~], by dragging patch cords, one at a
time, from outlet to inlet, as we did earlier.

fig. 1.6: The [dac~] object

The result should look similar to figure 1.7.

fig. 1.7: Our first patch

Watch out! Make sure you used the left outlet of [vs.gain~] for both
connections. If you notice that one of the two patch cords you just created
extends from the right outlet of [vs.gain~], you should delete it! Do this by
moving the mouse pointer over the patch cord (the pointer will turn into an X),
click on the patch cord to select it (it will turn blue), then type the delete key
on the computer keyboard (the same one you use to delete text when you are
typing) to delete the connection. You can now reconnect the objects correctly.

Now would be a good time to save your new patch to disk, keeping this warning
in mind: DON’T EVER save your patches to a file that shares a name with a pre-
existing Pd object! For example, don’t call this patch “osc~”. Doing this would
be a recipe for confusing Pd, and for causing unexpected results the first time
that you tried to reload your patch. Given that it is impossible to remember the
names of all the Pd objects, a good technique for avoiding the use of object
names, and therefore averting the danger of a confusing name, is to give your
files a name composed of multiple words with spaces between them: “test
oscillator”, for example, or “osc~ object test”, or any other combination. No
Pd object possesses a name composed of more than one word. Don’t forget
this advice! A large percentage of the problems encountered by Pd beginners
relates to saving files that share a name with some existing object.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

56 Practice - Section 1.1 - Installation and first steps with Pd

Good! We’ve finished implementing our first patch, and we are ready to make
it run. It lacks one more touch, however: up till now we’ve been in Edit Mode,
in which we assemble patches by inserting, moving and connecting objects
together, and now we need to make the transition into Run Mode, where
we will be able to hear and test our patch. To do this, press <Cmd/Ctl-e>, or
use the Edit menu to uncheck the Edit Mode menu option. Once the patch is
in Run Mode, type <Cmd/Ctl-/> (or use the Media menu to select DSP On) to
start the audio engine6, and then slowly raise the level of the slider in the [vs.
gain~] object.7 You should hear a sound, pitched at A above middle C. To
disable sound output, you can type <Cmd/Ctl-.> (or use the equivalent menu
selection: Media/DSP Off). If you are not hearing any sound at all, you should
try consulting the FAQ at the end of this section.

Now that we’ve built a patch and seen and heard it work, let’s revisit the
patch we made by analyzing the algorithm behind it: The [osc~] object is an
oscillator (a sound generator that produces a periodic waveform, in this case,
a sine wave), and the number 440 that we typed into its interior indicates the
frequency that we want it to produce; in this case, we specified that the sine
wave should repeat itself 440 times per second.8 In more formal terms, [osc~]
is the name of the object, and 440 is an argument – a value used by the
object to specify its operation. In this case, the argument 440 caused [osc~]
to produce a tone at 440 Hz.

The signal outlet of the [osc~] object is connected to the inlet of the [vs.
gain~] object, which causes the signal generated by [osc~] to be passed
on to the [vs.gain~] object, which, as we have seen, modifies the signal’s
volume when its volume fader is moved. The modified signal is then passed
on to the [dac~] object, which routes it to the computer’s sound driver.
The sound driver sends the signal to the audio interface, which performs
a digital-to-analog conversion on the signal to transform the numeric (i.e.
digital) representation of the sound into an audio wave that can be heard via
headphones or speakers. (This conversion, by the way, is where [dac~] gets
its name: DAC is an acronym for Digital-to-Analog Converter.)
Let’s now broaden the function of this patch. Let’s make it possible to actually
see what is happening in addition to hearing the sound. Save the current patch
(which you will need again in the next section) into an appropriate folder, for
example “My Patches”, and close the Patcher Window. If you haven’t already
downloaded and unpacked the “EMASD_PD_MATERIAL_vol_1.zip” archive
that can be found on the support web page mentioned at the beginning of this
chapter, do this now.

6 The audio engine in Pd is not active by default: it must be turned on (and off) by the user as
needed. This is because Pd, more generally speaking, is an actual programming language which, in
addition to sound synthesis, can perform other tasks that do not require the use of audio.
7 When a [vs.gain~] object is created, its slider is set to the minimum value (silence) by
default.
8 All of these concepts were laid out in Theory Section 1.2.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

57Chapter 1P - Sound synthesis with Pure Data

Open the file 01_01.pd, which you will find in the “EMASD_PD_MATERIALS/
VOL_1/01_patch” folder (see Figure 1.8).

fig. 1.8: The file 01_01.pd

When this file opens, you will see that we have added new objects to the
original patch. The new objects on the left, in which you can see numerical
values, are called [vs.number~] objects, and they show, via the numerical
value that they display, a snapshot of the signal that they are receiving. The
larger rectangular objects on the right are called [vs.scope~] objects, which
act as oscilloscopes allowing an incoming signal to be viewed as a graphic
waveform. The [vs.dbtoa] object and the object that is connected to its
outlet (which is called a number box9) are used to view exactly how much
amplification or attenuation is being applied to the signal by [vs.gain~].

Once again, start the patch by typing <Cmd/Ctl-/>, and observe the changing
numbers displayed in the [vs.number~] object on the upper left side of the
patch. These numbers are being produced by the [osc~] object and, if we
observe them for a bit, we can see that their values, both positive and negative,
fall between 1 and -1.

9 A number box can be created by typing <Cmd/Ctl-3>, or via the Put/Number menu option.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

58 Practice - Section 1.1 - Installation and first steps with Pd

On the upper right side of the patch we can see the [vs.scope~] object
displaying the same numbers in graphical form; the upper half of its panel
corresponds to positive numbers, and the lower half to negative numbers. In
the [vs.scope~] panel, hundreds of different values are shown, visualized
as a sequence of points, rather than the single number shown by the [vs.
number~] object. The points fall very close to each other on the screen, and so
they appear as a solid curve. The values that they represent – i.e., the numbers
that make up the digital signal itself – are called samples in the terminology
of digital music. And the curved line made from these sample values, as they
undulate high and low across the oscilloscope panel, is precisely the sinusoidal
wave produced by the [osc~] object.

If the [vs.gain~] fader is lowered to its minimum value, you will notice
that the lower set of [vs.number~] and [vs.scope~] objects display the
number 0 and a flat line (which is, of course, a sequence of zeros), respectively,
since the volume fader is at its lowest setting, resulting in a volume of 0. If
the [vs.gain~] fader is moved upwards, you should see the lower [vs.
number~] begin to display values that start out very small and gradually grow
larger as the volume rises, and at the same time, the flat line of the lower [vs.
scope~] should begin its undulation and assume the same look as the other
[vs.scope~]. We can infer from this that [vs.gain~] is controlling the
amplitude of the signal – the more we raise the fader, the greater the amplitude
of the oscillations becomes. If we go too far, and raise the value of the [vs.
gain~] fader to be close to its maximum setting, we see [vs.number~]
begin to exceed the amplitude limits of 1 and -1, and the waveform on the
oscilloscope becomes clipped at the top and bottom. More important than
these visual clues, you should be able to actually hear the sound change, as it
becomes distorted.

We can now draw some conclusions from what we’ve seen:

1. The [osc~] object produces a sequence of numeric values that follow
the shape of a sine wave10;

2. The numerical limits for samples in this sine wave are 1 and -1. The actual
sequence that these values follows can be seen on the upper [vs.
scope~], which shows the waveform at its maximum amplitude, above
which the quality of the sound would be distorted;

3. The [vs.gain~] object modifies the amplitude of the sine wave, cau-
sing the sample values at its outlet to be different than the corresponding
sample values received on its inlet. How does it do this? By multiplying the
values that it receives by a quantity that depends upon the position of the
fader. When the fader is in its lowest position, the signal is multiplied by 0,
and the result is a stream of zeros (because any number multiplied by 0 is
0). One can see that as we raise the fader, the multiplication factor rises.

10 In reality, as we will see later on in this book, [osc~] actually generates values that define the
shape of a cosine wave.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

59Chapter 1P - Sound synthesis with Pure Data

If, for example, we raise it from -inf to -6, the corresponding multiplication
factor will be 0.5 (as can be seen in the number box connected to the right
outlet of [vs.gain~]). This means the amplitudes of the samples that enter
the [vs.gain~] object are diminished (because multiplying a number by 0.5
is the same as dividing by 2). As we raise the fader to 0 (by moving it upwards
until the numerical value below the fader reads 0)11, the sample values entering
the object are identical to those leaving, since they are multiplied by 1.

Finally, if we raise the fader all of the way (the maximum allowed by this object
is a value of +6), the most extreme of the sample values will exceed the limits of
1 and -1, although these samples will then be brought back into line during the
digital-to-analog conversion. When that happens, however, the waveform will
no longer be a sine wave. Instead, it will be clipped (as we can see in the lower
oscilloscope). Sample values that fall outside of the -1 to 1 range are actually
simply reassigned the maximum possible amplitude during conversion, and the
distorted sound that we hear reflects the resulting truncated waveform.

We have continued the exploration of the concepts of frequency, amplitude,
and waveform, which we began in Section 1.2 of the theory chapter. Let’s recap
some practical aspects of these basic concepts:

• Amplitude is the physical parameter that corresponds to the intensity of
a sound; it is the parameter that controls the perception of whether a
given sonic event is forte or piano. In Pd, the absolute value of amplitude
(that is, the value of the parameter, independent of its sign) always lies
between 0 and a maximum of 1.

• Frequency is the physical parameter that relates to pitch; it is the parame-
ter that controls the perception of whether a given sonic event is high or
low in pitch. The values are expressed in hertz (Hz), and we need to keep
in mind that sounds audible to humans fall in the range between 20 and
around 20,000 Hz

• Waveform is a fundamental element of timbre, which we define as the
overall quality of a sound. Timbre enables us to perceive, for example, the
difference between the middle C played on a guitar and the same note
played on a saxophone. We have seen and heard the timbre of the sine
wave produced by [osc~].

FAQ (Frequently Asked Questions)
In this section, we will try to give answers to some of the more common
problems that are encountered by new users of Pd. You should probably read
these carefully even if you have not experienced a problem, since they contain
information that you will use in the following sections of the book.

11 For reasons that will be clear later on, [vs.gain~] uses the deciBel scale (see section 1.2 in
the previous Theory chapter), therefore a value of 0 does not mean an amplitude of zero (silence),
but rather corresponds to an amplitude of 1, the peak amplitude value.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

60 Practice - Section 1.1 - Installation and first steps with Pd

Question: I created an object called “osc~440”, as instructed in this section, but
the object has no inlets or outlets. What went wrong?

Answer: Be sure that you typed a space between “osc~” and “440”, because
the first is the name of the object, while the second is an argument, which
in this case represents the frequency of the sound. If the two words are run
together, Pd will search for a non-existent object named “osc~440”, and when
nothing is found, Pd will not be able to create an object box with the correct
number of inlets and outlets.

Q: Very good. Why, then, didn’t Pd give me an error message?
A: There is an error message, which can be found in the Pd Window, which is
a window that the program uses to communicate with you. If you cannot see
this window, press <Cmd/Ctl-r> to bring it up (or from the menu Window/Pd
Window). In the window, you will probably find a message such as:
“
osc~440
… couldn’t create”

Q: I inserted a space between “osc~” and “440”, but the object has no inlets
or outlets just the same!

A: There is a less obvious error that often turns up for some new users when
using objects that have a tilde (‘~’) at the end of their name. If you have a
keyboard on which there is no tilde key, and so you need to press a combination
of keys in order to produce the character (for example, <Alt-5> on some
regional localized Mac keyboard layouts), you may have continued pressing
one of the modifier keys when typing the space (for example, <Alt-Space> on
the Mac). The resulting combination is not recognized by Pd, as is not able to
separate the object name from its argument. Delete the space and re-insert it,
avoiding pressing modifier keys at the same time.

Q: There is no sound.

A: Have you turned on the audio by typing <Cmd/Ctl-r>? Have you raised the
volume fader above zero? Are you sure that sound on your computer is not
muted, or that you are able to produce sound by using a program other than
Pd? Have you checked the Audio Settings window (which you can find in the
Media menu), to see that the correct sound driver is selected?

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

61Chapter 1P - Sound synthesis with Pure Data

A Compact “Survival Manual” for Pd

In this section, we will give some essential information for easily navigating the
Pd environment.

BASIC KEYBOARD COMMANDS
Let’s start by reviewing the keyboard commands we have learned so far:

<Cmd/Ctl-n> will create a new Patcher Window, which is the workspace for
implementing patches.

<Cmd/Ctl-e> is used to toggle between Edit Mode and Run Mode in the
Patcher Window. In Edit Mode, we assemble patches by creating objects and
other types of text boxes, and connecting them together. In Run Mode we can
activate patches and interact with their graphical user interface objects (such as
number boxes or the [vs.gain~] object).

<Cmd/Ctl-r> will call up the Pd Window if it is not already visible. The Pd
Window is a window used by the Pd software to communicate with its user,
using brief text messages. We will learn more about this window shortly.
<Cmd/Ctl-1> will create a generic object box which can be placed in the patch.
An object name, often followed by one or more creation arguments, can be
typed into this box to create a specific Pd object. A generic object box can also
be created using the menu selection Put/Object.

<Cmd/Ctl-3> will create a number box that can be placed in the patch. This can
also be done using the menu selection Put/Number.

SELECTION, DELETION, AND COPYING
To delete a patch cord or an object, you need to ensure that you are in edit
mode,12 select the patch cord or object with the mouse, and then press the
<Delete> key (which may also sometimes be referred to as the <Backspace>
key). Several objects can be selected at the same time by clicking on a blank spot
in the Patcher Window and dragging a rectangular selection that encompasses
the objects to be selected. Selected objects are highlighted in blue. At this
point, if we move one of the selected objects, all of them will move. Likewise,
if we press the <Delete> key, all of the selected objects (as well as connections
between them) will be removed from the patch.

Things work a little differently if we only want to delete patch cords. To delete a
single patch cord, you simply need to select it by clicking on it with the mouse and
typing the <Backspace> key. Deleting a group of connections together, however,
is impossible because Pd does not allow you to select multiple patch cords.
Therefore, you will always need to select and delete patch cords one at a time.

12 When you move the mouse pointer over a patcher window in Edit Mode, it should look like a
hand with a pointing index finger.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

62 Practice - Section 1.1 - Installation and first steps with Pd

To duplicate an object or group of objects, you need to select it and type the
key combination <Cmd/Ctl-d>. The duplicate objects will appear selected, and
positioned very close to the originals, as shown in figure 1.9.

fig. 1.9: Duplicating objects

The duplicated objects (highlighted in blue) can then be moved by using the
arrow keys on the computer keyboard. By holding down the <Shift> key13
while using the arrow keys, the duplicated objects can be moved in larger steps.
Naturally, the duplicated objects may also be moved by clicking and dragging
them with the mouse, however it is very easy to accidentally deselect them this
way, which is rather inconvenient, given their close initial placement to the
originals.

To copy an object or group of objects from one Patcher Window to another,
you simply need to make a selection and use the key commands <Cmd/Ctl-c>
to copy and <Cmd/Ctl-v> to paste, as with most other software.

If you make a mistake (for example, you delete one object rather than another),
you can undo the action by selecting the Undo command from the Edit menu
(or by using the standard key combination <Cmd/Ctl-z>). If, after undoing one
or more actions, you decide that there wasn’t actually an error (for example,
if you realize you wanted to delete the object after all), you can restore the
action by using the Redo command, which is also found in the Edit menu (or
by using <Cmd/Ctl-Shift-Z>). Caution! Pd only stores one action at a time – the
last action which was carried out. Therefore, you can only use Undo or Redo to
cancel or reinstate your previous patch editing action.

AUTOPATCH MODE
Pd provides a convenient way of creating objects that are already connected
to each other, called autopatch mode. Let’s take a look at how this feature can
be used. Open a new patcher window (<Cmd/Ctl-n>) and create an [osc~
440] object inside it using <Cmd/Ctl-1>. Now, select the object and type
<Cmd/Ctl-1> once again: a new generic object box is created pre-connected
to the [osc~] object with a patch cord (as shown in figure 1.10).

13 <Shift> is the modifier key used to type capital letters.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

63Chapter 1P - Sound synthesis with Pure Data

Fig. 1.10: Using autopatch mode to create pre-connected objects

Now type ‘dac~’ into this object box and click in an empty part of the patcher
window to create a [dac~] object. You have just created a second object
connected to the first, without needing to click, drag and release a patch
cord between them. Note that this technique can only be used to create
connections between the leftmost inlets and outlets of objects.

DOCUMENTATION AND HELP
This book is self-contained: within it you will find all that you need for
understanding and using the patches with which we illustrate synthesis and
signal processing techniques using Pd. But the Pd software also comes equipped
with an array of built-in help materials – practically every object in Pd has its
own dedicated Help patch. To open up an object’s Help patch, right-click on the
object (or Control-click on Mac) while the patch is in Edit Mode and select Help
from the contextual drop-down menu which appears. (In Run Mode, however,
Windows and Linux users will need to hold down the CTRL or Control key and
left-click with the mouse to obtain the contextual drop-down menu.) Help
patches are fully functional Pd patches that generally summarize the principal
characteristics of an object, and provide simple examples of its use (see figure
1.11).

fig. 1.11: The Help patch for the [osc~] object

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

64 Practice - Section 1.1 - Installation and first steps with Pd

Additionally, you can also select the Browser... option in Pd Help menu to
access a simple file Browser that lets you navigate through the various folders
that contain help patches and files that make up the official Pd Documentation
written by Miller Puckette, the creator of Pure Data. The Help menu additionally
contains a link to the online HTML Documentation for the software.

EXERCISE

Create a new patcher window and attempt to reproduce the patch contained
in the file 01_01.pd. Pay careful attention that you don’t confuse the [vs.
number~] object with the number box! The former is created by typing the
string ‘vs.number~’ into a generic object box, whereas the latter is created using
the key command <Cmd/Ctl-3> (or via the menu selection Put/Number).

(...)

8

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

65Chapter 1P - Sound synthesis with Pure Data

other sections in this chapter:

1.2 	 FREQUENCY, AMPLITUDE, AND WAVEFORM	
	 Band limited generators
	
1.3 	 VARIATIONS OF FREQUENCY AND AMPLITUDE IN TIME: 	
	 ENVELOPES AND GLISSANDI
	 Glissandi	
	 Envelopes
	 Exponential and logarithmic curves

1.4 	 THE RELATIONSHIP OF FREQUENCIES TO MUSICAL 	
	 INTERVALS AND OF AMPLITUDES TO SOUND
	 PRESSURE LEVELS
	 Natural glissandi
	 Decibel to amplitude conversion
	 A chromatic scale

1.5 	 INTRODUCTION TO WORKING WITH SAMPLED SOUND
	 The [vs.splayer~] object
	 Recording an sound file

1.6 	 INTRODUCTION TO PANNING

1.7 	 SOME PD BASICS
	 Messages vs. signals
	 The [cnv] object

ACTIVITIES
•	Correcting algorithms
•	Analyzing algorithms
•	Completing algorithms
•	Substituting parts of algorithms

TESTING
•	Integrated cross-functional project: reverse engineering

SUPPORTING MATERIALS
•	List of principal commands
•	list of native Pd objects
•	List of Virtual Sound library Objects
•	List of messages for specific objects
•	Glossary

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

PROGRAMMING WITH PD

IA.1		 BINARY OPERATORS AND ORDER OF OPERATIONS
IA.2		 GENERATING RANDOM NUMBERS
IA.3		 MANAGING TIME: THE METRO OBJECT
IA.4		 SUBPATCHES AND ABSTRACTIONS
IA.5		 OTHER RANDOM GENERATORS
IA.6 	 LISTS
IA.7		 THE MESSAGE BOX AND VARIABLE ARGUMENTS
IA.8		 WIRELESS CONNECTIONS
IA.9		 ARRAYS

Interlude A

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	Contents of chapter 1 (theory and practice)

OBJECTIVES
Skills
•	To learn how to use the basic features of Pure Data that pertain to numbers

•	To learn how to generate and Control sequences of random numbers, optionally

	 with the use of a metronome

•	To learn how to construct algorithms within subpatch and abstraction
•	To learn how to repeat messages across multiple object outlets
•	To learn how to assemble and disassemble lists

•	To learn how to manage and use variable arguments
•	To learn how to manage communication between objects without using virtual

patch cords

CONTENTS
•	Numbers in Pd
•	Generating and controlling random numbers with the objects [random], [vs.
drunk] etc.

•	Generating regular rhythmic events using the [metro] object

•	Constructing subpatch and abstraction

•	Managing lists and variable arguments

•	Using the [send] and [receive] objects for wireless communication between objects

ACTIVITIES
Activities on your computer:
•	Analyzing algorithms, completing algorithms, replacing parts of algorithms,

correcting algorithms, and constructing new algorithms

TESTING
•	Integrated cross-functional project: reverse engineering

SUPPORTING MATERIALS
•	List of Pd native objects – List of Virtual Sound library objects – List of messages

for specific objects - Glossary

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

In this first “interlude” we will examine a few aspects of programming Pd more
in depth, so to provide you with useful information. Because of the essential
nature of this information, we encourage you not to skip over this section
unless you are already truly expert in Pd. It is important that you implement all
the tutorial patches that we propose throughout the text, as these small efforts
yield the biggest results.

IA.1 BINARY OPERATORS AND ORDER OF OPERATIONS
Installation and system configuration

Like any respectable programming language, Pd can do many things with
numbers. We will begin this chapter by looking at the simplest operations with
numbers. Recreate the simple patch shown in figure IA.1. (Make sure there is a
space between ‘+’ and ‘5’!).

fig. IA.1: addition

The [+] object adds its argument (which is, in this case, 5) to whatever number
it receives on its inlet. If we feed some numbers to the object via the number
box above it (by selecting it, for example, in run mode and then writing a value),
we can track the results of the operation in the lower number box.
The right inlet is used to change the argument, and if we send a number to
this inlet, by using another number box, the number will be substituted for
the argument of the [+] object in the sum that will be produced, when new
numbers are sent on to the left inlet.
Try this by adding a number box on the right, as shown in fig. IA.2 .

fig. IA.2: addition with a changeable argument

123Interlude A - Programming with Pd

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

124 Practice - Section IA.1 - Binary operators and order of operations

When you play with this patch, note that the operation is executed only when
a number is sent to the left inlet, and not when a number is sent to the right
inlet (which is used to replace the argument instead).

Let us clarify this point. The numbers entering the two inlets of the [+] object
are stored into two memory cells, which we refer to as internal variables, and
that are contained within the object itself. Every time a new number enters
one of the two inlets, the corresponding internal variable is updated. (The old
number is deleted and replaced with the new one.) When the number enters
the left inlet, the [+] object sums the values of the two internal variables. This
is a feature shared by most of the Pd objects, which execute their functions
only when a message is received on their left inlet. Messages that are sent to
other inlets are used either to modify the arguments (by updating the internal
variables), or else to change the behavior of an object.

In the lexicon of Pd, the left inlet is defined as the hot inlet, one that causes the
operation to be carried out on the object, while the other inlets are defined as
cold, which update the internal variables without producing output.
To sum up, for an operation to be carried out properly, it is important that data
are first sent to the cold inlets and then to the hot inlet.
In order for the left inlet (the hot one) to be the last to receive data, messages
are output from right to left too. Let us look at an example using the [swap]
object, which we have already studied at the end of the first chapter. This object
swaps the order of the first two incoming numbers. When returning the values,
it outputs a number through the right outlet first, and then a number through
the left one (see fig. IA.3).

fig. IA.3: output order of an object

Once you have recreated the patch, first click on the right message box (‘20’)
and then on the left one (‘10’) to test if it works. The object will first output the
value 10 through the right outlet, and then the value 20 through the left outlet.

THE TRIGGER OBJECT
The purpose of this kind of behavior (i.e., the hot and cold inlets combined
with the right-to-left order) is to avoid ambiguity. Just remember to follow
this protocol and you will not encounter any problems. What happens when
a single outlet outputs two patch cords? (This situation is illustrated in the
example IA.4.)

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

125Interlude A - Programming with Pd

fig. IA.4: output order of a single outlet

Pd gives priority to the patch cord you create first. In this example (which shows
you how to calculate the square of 3), the operation is carried out properly
only if you connect the right cable first. In fact, in this case, when activating
the message box, the message ‘3’ is sent to the right inlet first and stored in
the corresponding internal variable, and then a copy of the same message is
sent to the left inlet as well. Finally, the operation is carried out. If you created
the left cable first, when activating the message box, the number ‘3’ would be
sent to the left inlet first, and the calculation would be performed immediately.
Therefore, the number 3 would be multiplied by 0, as the right inlet would not
receive any value, and you would get an unpredictable result.

Just by looking at the patch, it is impossible to determine in what order it was
built, and therefore we suggest you do not use this type of configuration.
The object that allows you to specify the order in which messages are sent is
[trigger], which can also be used in its abbreviated form [t] (see fig. IA.5).

fig. IA.5: the [trigger] object

This object accepts an arbitrary number of creation arguments, each of which
indicates the type of message to be returned. For each individual argument, an
outlet is created.
When [trigger] receives a message on its single inlet, it outputs the
same message through all its outlets, starting from the rightmost one. In the
example shown, two numeric (float) outlets have been created. When the
message ‘3’ is received, this value is immediately put out through the right
outlet first, and then through the left one. This way, the [*] object receives
the elements of the multiplication in the correct order, causing it to carry out
the operation in the desired manner.
Oftentimes, you may find it useful to convert the outlet type, since [trigger]
can also convert the type of atoms it receives. Figure IA.6 shows a [trigger]
object which contains two arguments. The first one, b, (which stands for bang),
indicates that whatever number is sent to the inlet, the first outlet will always
output a bang. The second argument, f, (which stands for float), indicates that
the right outlet of [trigger] will always output the number received at its inlet.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

126 Practice - Section IA.1 - Binary operators and order of operations

fig. IA.6: type conversion using [trigger]

In the example shown in the figure, the message box sends the number 3 to
[trigger], which in turn outputs this number through the right outlet, while
the left outlet outputs a bang.

In figure IA.7 we used the conversion system to implement a simple algorithm
that makes the cold inlet of a [+] object behave like a hot one. When we
send the addend to the left inlet, the [+] object will carry out the operation
and output the result. When we send a value using the number box on the top
right instead, this will send the value to the [trigger] object, which in turn
will output the same value through its right outlet first (also storing it into the
corresponding internal variable), and then send a bang to the left inlet of the
[+] object (which ‘forces’ the object to produce the result by summing the two
values that were stored in the internal variables).

fig. IA.7: how to make a cold input behave like a hot one

To conclude, let us review the various arguments that the [trigger] object
can accept, also introducing some new ones we do not know yet.

f: 	 float number
s: 	 symbol
b:	 bang
l: 	 list (a message consisting of several atoms)
a: 	 anything (this argument lets anything through it, without performing any conversion)

DEPTH FIRST
The last principle that regulates the order of the operations is called the depth
first. Basically, this rule states that a message can “travel” only once, until it
reaches an end point in order for it to be able to “travel” again. In figure IA.8,
the initial bang is first sent through the right section of the algorithm, then it
reaches the [print A] object, and then is sent through the middle section to

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

127Interlude A - Programming with Pd

reach [print B]. Finally, it is sent through the left section of the algorithm
until it reaches the [print C] object.

fig. IA.8: the depth first principle

If you click on the upper bang you will notice that the three bangs light up
simultaneously. That is because it takes a very short time for the message to
travel through the three sections of the patch.
However, if you look at the pd window you can see that the first [print] that
receives the bang is the one labelled as ‘A’, then ‘B’, and eventually ‘C’.

Back to the Pd [+] object, we will now see a simple musical application. Open
the file IA_01_transposition.pd (which is shown in fig. IA.9).

fig. IA.9: the file IA_01_transposition.pd

In this patch, every time you enter a value in the upper number box, two notes
are generated. The second note is seven semitones above the first one, which
is a perfect fifth. In practice, every time we enter a value in the number box,
the corresponding MIDI note is sent to the left [mtof] object, which converts
it into a frequency. In the meantime, however, the same note is sent to an
addition operator which adds the value ‘7’ to the note, thus adding seven
semitones to the base note. The result of the sum is then sent on to a second
[mtof] object.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

128 Practice - Section IA.1 - Binary operators and order of operations

Hence, by using the addition operator it is possible to transpose MIDI notes
by any interval of your liking (meaning you can arbitrarily decide the distance
between two notes). After the MIDI values of the two notes have been converted
into frequency values, they are sent to two oscillators ([vs.blsquare~] and
[vs.blsaw~]), which will play the fifth interval. Play with the patch shown
in fig. IA.9 and try using various intervals (such as a third, four semitones, or a
fourth, five semitones, and so on). Then add a new addition operator, connect it
to a new [mtof] object, which is in turn connected to an oscillator, and make
sure that for each value entered in the upper number box, a three-note major
chord is generated. If, for example, you enter the value 60 in the number box,
you will obtain the chord 60, 64, 67.

HOW NUMBERS ARE REPRESENTED IN PD AND OTHER

OPERATIONS

Before delving deeper into binary operators, it is important to understand how
numbers are represented in Pd. Unlike most of the programming languages,
which distinguish integer from floating-point values, there are only float
numbers inside Pure Data.

This can lead to some problems when you need to carry out those operations
that require integer numbers. In the example shown on the left of figure IA.10,
a programmer would expect a division between integer numbers (of course, the
[/] object should carry out the division operation), which generally returns an
integer result. In Pd the two input numbers are considered as float and the result
itself is returned as a float value. In order to carry out an integer division (with
an integer result) you need to convert the result into an integer value using the
[int] object. To be precise, the [int] object removes the fractional part of a
float value, also returning a new float number (see the right half of fig. IA.10).

fig. IA.10: the division

The [int] object, as well as its counterpart used for floating-point numbers
([float]) – abbreviated to [i] and [f], respectively – also perform another
important function. In fact, they store the last value received on their right or
left inlet. If, for example, we send a value to the right inlet of one of these
objects, this same value can be put out through the outlet by sending a bang
to the left inlet (see fig. IA.11).

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

129Interlude A - Programming with Pd

fig IA.11: the [float] object

The binary operators we have already seen ([+], [*] and [/]), along with [–]
and [pow], are a group of arithmetical binary operators which we will discuss
several times throughout the course of this book. Open a new patcher window,
create some objects for the arithmetical operations and test their behaviors.

To conclude, let us now analyze a simple example of how to use binary
operators in order to implement a system that, when working with two
oscillators, uses a certain frequency for the first one, and a transposition of a
perfect fifth for the other. Open the file IA_02_fifths.pd (see fig. IA.12).

fig. IA.12: the file IA_02.fifths.pd

In this patch you can see that the MIDI note we entered in the left number
box is converted into frequency using a [mtof] object, and then sent to a
band-limited square wave oscillator ([vs.blsquare~]). Furthermore, this
frequency is multiplied by 3/2, so to obtain a frequency which is a fifth above,
and then sent to a band-limited sawtooth wave oscillator ([vs.blsaw~]).
Hence, the output of the [mtof] object is split in two; a cable is connected
to the left number box, while the other cable is connected to the [*] object
using the argument 3.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

130 Practice - Section IA.1 - Binary operators and order of operations

If you compare figures IA.9 and IA.12, you will notice that the frequency
of the highest note (the fifth) is slightly different (so the resulting timbre is
different as well).
In fact, using the two [mtof] objects we calculated the interval of an equal-
tempered fifth (the one which is commonly used in occidental music), which
is equal to seven equal-tempered semitones. Conversely, the 3/2 ratio allows
us to calculate a perfect fifth, which is about two cents (cents of an equal-
tempered semitone one) ‘wider’ than an equal-tempered fifth.

If you are curious about which and how many binary operators are available in
Pd, open the file help-intro.pd, which can be opened via the menu Help/List
of objects, that shows the list of all Pd objects (see fig. IA.13). This is a good
starting point to learn about Pd objects and their features.

fig. IA.13: part of the file help-intro.pd

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

131Interlude A - Programming with Pd

(...)

other sections in this chapter:

IA.2 	 GENERATING RANDOM NUMBERS	

IA.3 	 MANAGING TIME: THE METRO OBJECT

IA.4 	 SUBPATCHES AND ABSTRACTIONS
	 Abstractions
	 Graph-on-parent
	
IA.5 	 OTHER RANDOM NUMBER GENERATORS

IA.6 	 LISTS
	 The pack and unpack objects
	 The list append and list prepend objects
	 Other objects used to handle lists
	
IA.7 	 THE MESSAGE BOX AND VARIABLE ARGUMENTS
	 The command message set
	 Variable arguments: the dollar sign ($)

IA.8 	 WIRELESS CONNECTIONS

IA.9 	 ARRAY
	 The vs.uzi object
	 The tabwrite object
	 Envelopes
	 Standard envelopes

ACTIVITIES
•	Analyzing algorithms
•	Completing algorithms
•	Replacing parts of algorithms
•	Correcting algorithms

TESTING
•	Integrated cross-functional project: reverse engineering

SUPPORTING MATERIALS
•	List of Pd native objects
•	List of Virtual Sound Library objects
•	List of messages for specific objects
•	Glossary

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

ADDITIVE AND VECTOR SYNTHESIS

2.1 FIXED SPECTRUM ADDITIVE SYNTHESIS
2.2 BEATS
2.3 CROSSFADING BETWEEN WAVETABLES: VECTOR SYNTHESIS
2.4 VARIABLE SPECTRUM ADDITIVE SYNTHESIS

2T

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	Contents of Chapter 1 (Theory)
	
LEARNING OBJECTIVES
Knowledge
•	To learn about the theory behind adding waveforms (phase, constructive interference,

destructive interference)
•	To learn about the theory and use of basic additive synthesis, using both fixed and

variable spectra to produce both harmonic and non-harmonic sounds

•	To learn about the relationship between phase and beats

•	To learn how to use wavetables, and how interpolation is implemented

•	To learn some theory to support basic vector synthesis

Skills
•	To be able to differentiate between harmonic and non-harmonic sounds

•	To be able to recognize beats upon hearing them

•	To identify the different segments of a sound envelope, and to describe their
characteristics

CONTENTS
•	Additive synthesis using both fixed and variable spectra

•	Harmonic and non-harmonic sounds

•	Phase and beats

•	Interpolation

•	Vector synthesis

ACTIVITIES
•	Interactive examples

TESTING
•	Questions with short answers

•	Listening and analysis

SUPPORTING MATERIALS
•	Fundamental concepts

•	Glossary

•	Discography

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

2.1 FIXED SPECTRUM ADDITIVE SYNTHESIS

A sound produced by an acoustic instrument, any sound at all, is a set of
complex oscillations, all produced simultaneously by the instrument in question.
Each oscillation contributes a piece of the overall timbre of the sound, and their
sum wholly determines the resulting waveform. However, this summed set of
oscillations, this complex waveform, can also be described as a group of more
elementary vibrations: sine waves.
Sine waves are the basic building blocks with which it is possible to construct
all other waveforms. When used in this way, we call the sine waves frequency
components, and each frequency component in the composite wave has its
own frequency, amplitude, and phase. The set of frequencies, amplitudes, and
phases that completely define a given sound is called its sound spectrum. Any
sound, natural or synthesized, can be decomposed into a group of frequency
components. Synthesized waveforms such as we described in Section 1.2 are no
exception; each has its own unique sound spectrum, and can be built up from a
mixture of sine waves. (Sine waves themselves are self-describing – they contain
only themselves as components!).

SPECTRUM AND WAVEFORM
Spectrum and waveform are two different ways to describe a single sound.
Waveform is the graphical representation of amplitude as a function of time.1
In figure 2.1, we consider the waveform of a complex sound in which the
x-axis is time and the y-axis amplitude. We note that the waveform of this
sound is bipolar, meaning that the values representing its amplitude oscillate
above and below zero. A waveform graph is portrayed in the time domain,
a representation in which instantaneous amplitudes are recorded, instant by
instant, as they trace out the shape of the complex sound.

Fig. 2.1 The waveform of a complex sound

1 In the case of periodic sounds, the waveform can be fully represented by a single cycle.

am
pl

itu
de

time in msec

185Chapter 2T - Additive and vector synthesis

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

186 Theory - Section 2.1 - Fixed spectrum additive synthesis

In figure 2.2, we see the same complex sound broken into frequency
components. Four distinct sine waves, when their frequencies and amplitudes
are summed, constitute the complex sound shown in the preceding figure.

Fig.2.2 Decomposition of a complex sound into sinusoidal components

A clearer way to show a “snapshot” of a collection of frequencies and
amplitudes such as this might be to use a graph in which the amplitude of
the components is shown as a function of frequency, an approach known as
frequency domain representation. Using this approach, the x-axis represents
frequency values, while the y-axis represents amplitude. Figure 2.2b shows our
example in this format: a graph displaying peak amplitudes for each component
present in the signal.

Fig. 2.2b A sound spectrum

0 1 2 3 4 5 6 7 8 9 10

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

0.5

0

0.5

1
am

p
am

p
am

p
am

p

time in msec

+

+

+

am
pl

itu
de

frequency in Hz

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

Chapter 2T - Additive and vector synthesis 187

In order to see the evolution of components over time, we can use a graph
called a sonogram (which is also sometimes called a spectrogram), in which
frequencies are shown on the y-axis and time is shown on the x-axis (as
demonstrated in figure 2.2c). The lines corresponding to frequency components
become darker or lighter as their amplitude changes in intensity. In this
particular example, there are only four lines, since it is a sound with a simple
fixed spectrum.

Fig. 2.2c A sonogram (also called a spectrogram)

Now we will consider a process in which, instead of decomposing a complex
sound into sine waves, we aim to do the opposite: to fashion a complex sound
out of a set of sine waves.

This technique, which should in theory enable us to create any waveform at all
by building up a sum of sine waves, is called additive synthesis, and is shown
in diagrammatic form in figure 2.3.

Fig. 2.3 A sum of signals output by sine wave oscillators

In figure 2.4, two waves, A and B, and their sum, C, are shown in the time
domain.

time

300

600

900

1200

fr
eq

ue
nc

y
in

 H
z

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

188 Theory - Section 2.1 - Fixed spectrum additive synthesis

Fig.2.4 A graphical representation of a sum of sine waves

As you can easily verify by inspection, instantaneous amplitudes for wave C are
obtained by summing the instantaneous amplitudes of the individual waves A
and B. These amplitude values are summed point-by-point, taking their sign,
positive or negative, into consideration. Whenever the amplitudes of A and B
are both positive or both negative, the absolute value of the amplitude of C
will be larger than that of either of the component, resulting in constructive
interference, such as displayed by the following values:

A = -0.3
B = -0.2
C = -0.5

Whenever the amplitudes of A and B differ in their signs, one being positive and
the other negative, the absolute value of their sum C will be less than either
one or both components, resulting in destructive interference, as shown in
the following example:

A = 0.3
B = -0.1
C = 0.2

“The largest part, indeed nearly the entirety, of sounds that we hear in the real
world are not pure sounds, but rather, complex sounds; sounds that can be

am
p

am
p

am
p

time in msec

+

=

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

Chapter 2T - Additive and vector synthesis 189

resolved into bigger or smaller quantities of pure sound, which are then said to be
the components of the complex sound. To better understand this phenomenon,
we can establish an analogy with optics. It is noted that some colors are pure,
which is to say that they cannot be further decomposed into other colors (red,
orange, yellow, and down the spectrum to violet). Corresponding to each of
these pure colors is a certain wavelength of light. If only one of the pure colors
is present, a prism, which decomposes white light into the seven colors of the
spectrum, will show only the single color component. The same thing happens
with sound. A certain perceived pitch corresponds to a certain wavelength2 of
sound. If no other frequency is present at the same moment, the sound will be
pure. A pure sound, as we know, has a sine waveform.”
(Bianchini, R., Cipriani, A., 2000, pp. 69-70)

The components of a complex sound sometimes have frequencies that are
integer multiples of the lowest component frequency in the sound. In this
case the lowest component frequency is called the fundamental, and the
other components are called harmonics. (A fundamental of 100 Hz, for
example, might have harmonics at 200 Hz, 300 Hz, 400 Hz, etc.) The specific
component that has a frequency that is twice that of its fundamental is called
the second harmonic, the component that has a frequency that is three times
that of the fundamental is called the third harmonic, and so on. When, as in
the case we are illustrating, the components of a sound are integer multiples
of the fundamental, the sound is called a harmonic sound. We note that in
a harmonic sound the frequency of the fundamental represents the greatest
common divisor of the frequencies of all of the components. It is, by definition,
the maximum number that exactly divides all of the frequencies without leaving
a remainder.

INTERACTIVE EXAMPLE 2A – HARMONIC COMPONENTS

(...)

2 “The length of a cycle is called its wavelength and is measured in meters or in centimeters. This
is the space that a cycle physically occupies in the air, and were sound actually visible, it would be
easy to measure, for example, with a tape measure.” (Bianchini, R. 2000)

8

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

190 Theory - Section 2.1 - Fixed spectrum additive synthesis

other sections in this chapter:

	 Phase	
	 Harmonic and non-harmonic spectra
	 Periodic versus aperiodic, and harmonic versus non- harmonic
	 Interpolation

2.2 	 BEATS

2.3 	 CROSSFADING BETWEEN WAVETABLES: VECTOR 		
	 SYNTHESIS

2.4 	 VARIABLE SPECTRUM ADDITIVE SYNTHESIS

ACTIVITIES
•	Interactive examples

TESTING
•	Questions with short answers
•	Listening and analysis

SUPPORTING MATERIALS
•	Fundamental concepts
•	Glossary

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

ADDITIVE SYNTHESIS AND VECTOR
SYNTHESIS

2.1		 FIXED SPECTRUM ADDITIVE SYNTHESIS
2.2		 BEATS
2.3		 CROSSFADING BETWEEN ARRAYS: VECTOR SYNTHESIS
2.4		 VARIABLE SPECTRUM ADDITIVE SYNTHESIS

2P

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	Contents of Chapter 1 (theory and practice), Chapter 2 (theory), interlude A

LEARNING OBJECTIVES
Skills

•	To learn how to synthesize a complex sound from simple sine waves

•	To learn how to synthesize harmonic and non-harmonic sounds using additive
synthesis and wavetables, and to transform one into the other (and vice versa) by
using amplitude and frequency control

•	To learn how to implement triangle waves, square waves, and sawtooth waves
approximately by adding component harmonic sine waves together

•	To learn how to control beats between two sine waves or harmonics

•	To learn how to synthesize sounds using vector synthesis

Competence

•	To successfully realize a sound study based on additive synthesis and save it to an
audio file

CONTENTS
•	Additive synthesis using both fixed and variable spectra
•	Harmonic and non-harmonic sounds

•	Phase and beats

•	Interpolation

•	Vector synthesis

ACTIVITIES
•	Correcting algorithms

•	Completing algorithms

•	Replacing parts of algorithms

•	Analyzing algorithms

•	Constructing new algorithms

TESTING
•	Integrated cross-functional project: reverse engineering

•	Integrated cross-functional project: composing a brief sound study

SUPPORTING MATERIALS
•	List of native Pd objects, list of Virtual Sound Library objects, list of messages for

specific objects

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

2.1 FIXED SPECTRUM ADDITIVE SYNTHESIS

The first patch of this chapter implements an additive synthesis algorithm with
a harmonic spectrum. As we have already learned a harmonic spectrum is one
whose partials’ frequencies are whole number multiples of a given fundamental
frequency. The patch shown here is based on figure 2.12 in the theory part of
this chapter, where 10 oscillators are added together using a mixer.
Each oscillator receives a value to set its frequency and another to determine
its amplitude. To create a harmonic spectrum, all you need to do is select a
fundamental frequency and multiply it by a series of successive whole numbers.
This way, the first oscillator is set to the fundamental, the second to twice that
frequency, the third to triple the frequency, and so forth. Figure 2.1 shows the
patch contained in the file 02_01_harmonic_spectrum.pd.

fig. 2.1 the file 02_01_harmonic_spectrum.pd

The number box on the upper left-hand side of the patch is used to set the
fundamental frequency. This value goes directly into the left inlet of the first
[osc~] object, while the other objects receive a whole number multiple of
this value calculated using a [*] object. The output signal of each [osc~]
is connected to a [*~] object in order to scale its amplitude – you will notice
that each [*~] receives a different multiplication factor from the number box
connected to it. The 10 scaled signals are sent to the left inlet of another [*~]

231Chapter 2P - Additive synthesis and vector synthesis

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

232 Practice - Section 2.1 - Fixed spectrum additive synthesis

with an argument of 0.1: this means the summed signals will be scaled by 0.1
so the resulting signal does not exceed the maximum amplitude threshold1.

This type of algorithm creates a fixed spectrum, because the partial frequencies
always have the same ratio to each other and to the fundamental frequency,
even if it changes. The amplitude of each partial, on the other hand, can be
changed at will, in order to create different timbres. The message boxes at
the bottom of the patch contain preset amplitude lists which are sent to the
[receive] ([r]) object with the argument amps, and the unpacked into
individual numbers using the [unpack] object.

Note that there is nothing preventing us from using the mouse to manually set
the amplitudes of the partials one by one, in each number box. We just need to
be sure to hold down the SHIFT key before clicking and dragging on the number
box, in order to create decimal values, so we do not exceed the maximum
amplitude value of 1. Listen to the different timbre presets by clicking on the
message boxes (naturally, after having turned on the audio engine).

On the lower right-hand side of the patch you will notice a toggle connected
to a [switch~] object. This can be used to locally turn the audio on and off
for the patch where it is located – this includes any subpatches and abstractions
used in the patch2. Essentially, [switch~] lets you decide which patches you
want to “play” and which ones you want to mute, in order to avoid unwanted
superimposition of multiple audio algorithms when multiple patches are open.
When the toggle is used to send the ‘1’ message to [switch~], audio will be
turned on in the patch where it is located. Conversely, when a ‘0’ message is
sent, audio is turned off for that patch, leaving other open patches unaffected.
It goes without saying that for [switch~] to do its job, the main audio engine
must be turned on.3
sinsum
The [switch~] object will not appear in the patch images in subsequent
figures in this text for reasons of simplicity and clarity, however it will be
included in the patches, themselves, for the sake of convenience. When you
are creating your own patches and/or copying algorithms from this book, it can
often be useful to include a toggle connected to a [switch~] object so you
can easily control the audio in each of your open patches. However, you should
be sure to create the [switch~] before you put any other tilde objects in your
patch! If you add the [switch~] to your patch after other audio objects, it will
not work unless you save your patch to a named file on disk.

1 Each oscillator outputs a signal whose maximum amplitude value can be equal to 1. If the output
signals of all the oscillators are at maximum amplitude, the maximum amplitude of their summed
signal will be 10. By multiplying this signal by 0.1, we can be sure that the maximum possible
amplitude value after summation will be equal to 1.
2 The [switch~] object additionally has some other uses which will be discussed later.
3 Remember that the key combination <C-/> can always be used to turn the audio engine on.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

233Chapter 2P - Additive synthesis and vector synthesis

ACTIVITIES

1.	 Take the patch 02_01_harmonic_spectrum.pd as a starting point and
create two new amplitude lists in two new message boxes. In the first, give
all odd harmonics an amplitude of 1 and even harmonics an amplitude
of 0, and the second give the even harmonics an amplitude of 1 and odd
harmonics an amplitude of 0. What is the most obvious difference between
them? Why?

2.	 Again, using the patch 02_01_harmonic_spectrum.pd as a starting
point, and referring to the topic of the missing (or phantom) fundamental
discussed in section 2.1 of the theory part of this chapter, create a spectrum
where all the harmonic amplitudes are at 1, then slowly attenuate the
amplitude of the fundamental to down to zero. You should still hear a
spectrum whose fundamental is equal to the frequency that has just been
silenced. Now try attenuating the amplitudes of the other harmonics to
zero, in succession, one by one. At which point do you no longer hear the
fundamental frequency?

PHASE
As you have probably already noticed, the [osc~] object has two inlets.
The left inlet (the one we have been using up until now) is used to set the
oscillator’s frequency; its input can be either a message or a signal. The right
inlet, on the other hand, is used to set the oscillator’s phase, and can only
receive messages. The values which can be sent to this inlet are decimal
values between 0 and 1, which represent the normalized phase: a value of 0
corresponds to an angle of 0° or 0 radians, a value of 0.25 corresponds to an
angle of 90° or π/2 radians, a value of 0.5 corresponds to 180° or π radians,
and so forth. A normalized phase value of 1 corresponds to the end of a cycle
– 360° which is also equal to 0°.

When a message is sent to the right inlet of [osc~], it forces the oscillator
to immediately jump to the point in the waveform indicated by the message,
and continue outputting the waveform from that point onward. For example,
the message ‘0’ causes the waveform to be output from a phase value
corresponding to 0° or 0 radians. Try this out by recreating the patch shown
in figure 2.2.

fig. 2.2 resetting the phase of an [osc~] object.

8

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

234 Practice - Section 2.1 - Fixed spectrum additive synthesis

Turn on the audio and click repeatedly on the message box to reset the
waveform’s phase. You should notice a click each time you send the message,
since the waveform gets interrupted mid-stream and reset to output from the
beginning of the waveform (i.e., the value 0 indicated in the message box).

Figure 2.3 shows what happens to the oscillator when its phase is reset. As
soon as the object receives the value from the message box, telling it to reset
its phase, it jumps immediately to the point in the waveform indicated by the
message, creating a discontinuity in the output waveform, which is heard as
an audible click. When using the message ‘0’ to reset the phase (as in figure
2.2), the message forces the oscillator to begin outputting the waveform
again from the beginning of its cycle.
The beginning of a sine wave’s cycle, as we learned in the theory chapter
1.2, corresponds to an amplitude value of 0. So why does the [osc~] object
begin again from a value of 1, when its phase is reset to 0? In reality, the
[osc~] object does not use a sine function for its output, but rather a cosine
function, whose cycle starts with the maximum amplitude value (i.e., 1).

fig. 2.3 a graphical representation of a discontinuity when resetting the phase

The phase parameter is not really very interesting on its own when used this
way. However, it does become interesting when applying it to two waveforms
of the same frequency that are summed together. When both waveforms are
exactly in phase with each other their sum is a signal with the same waveform,
but having double the amplitude.

Copy the patch shown in figure 2.4, turn on the audio, and click on the
message box on the left, labelled ‘in phase’. You will notice that the phase
of both oscillators gets reset immediately to the same value at the same
time, and the sum of the oscillators’ output is a waveform with double the
amplitude. What happens when you click on the number box labelled ‘out of
phase’ on the right? The phase of the oscillator on the left is reset to its initial
value, while the one on the right is simultaneously reset using a phase value of
0.5, corresponding to a phase of 180°. This value creates a waveform whose
phase is opposite that output by the other oscillator. Therefore, when the two
waveforms are added together, sample by sample, a constant signal of 0 is
created, causing silence.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

235Chapter 2P - Additive synthesis and vector synthesis

fig. 2.4 resetting the phase of two oscillators

Now open the file 02_02_phase.pd, shown in figure 2.5. In this patch, the
phase of the oscillator on the left is always reset to 0, whereas the one on the
right can be reset to any value via the number box at the top of the patch. When
the phase is changed, a bang causes waveforms to be written to three arrays,
allowing us to visualize each of the two oscillators’ waveforms and the resulting
waveform when they are added. If you set the phase of the right oscillator to
0.5, you will see that the resulting sum is a constant signal equal to 0. When you
set the phase to a value near 0 or 1, the amplitude of the resulting waveform
exceeds the limits of -1 and 1. Try changing the phase to different values (with
the audio turned on, naturally!), and you will see that the behavior is cyclic –
when the phase value is near 0.5, 1.5, 2.5, etc., the two waveforms cancel each
other out, and when the phase is near a whole number (0, 1, 2, 3, etc.) the sum
is double the amplitude of the individual waveforms. This cyclic pattern is a result
of the fact that a phase value of 1 resets the waveform to the value at 360°,
which is the same as an angle of 0° – this is true of all integer multiples of 1.

fig. 2.5: file 02_02_phase.pd

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

236 Practice - Section 2.1 - Fixed spectrum additive synthesis

The [vs.osc~] object, unlike [osc~], allows us to use a signal in the right
inlet to control the oscillator’s phase. To try this out, rebuild the patch shown
in figure 2.6.

fig. 2.6: An oscillator controlled by a [phasor~]

In this patch, there is a [vs.osc~] object at 0 Hz (since the object has no
argument and no numerical message has been sent to its left inlet) whose phase
is controlled by a [phasor~] object whose frequency, as shown in the image,
is 0 – in other words it is stopped. Looking at the oscilloscope, we can see that
the [phasor~] is outputting a stream of samples whose value is 0 and the
[vs.osc~] object is outputting a stream of samples whose value is 1 (actually,
we can’t readily notice this because this value corresponds to the upper border
of the [vs.scope~] object’s rectangle) – therefore both objects are stopped
at the beginning of their cycle.

Now let’s see what happens when we give [phasor~] a frequency that is
greater than 0, let’s say 400 Hz (as shown in figure 2.7). Try reconstructing
this patch. You will notice that the [phasor~] controls the phase of the
[vs.osc~] object continuously, thereby causing it to oscillate at the same
frequency (and naturally also the same phase). We already learned in section 1.2
that [phasor~] outputs a ramp whose values go from 0 to 1, and this ramp,
when applied to the phase of [vs.osc~] causes it to oscillate. This explains
the name of the [phasor~] object: one of its main purposes is to be used to
control the phase of another object.

(...)

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

237Chapter 2P - Additive synthesis and vector synthesis

other sections in this chapter:
	
	 Using arrays with oscillators
	 Fixed inharmonic spectrum

2.2 	 BEATS
	 Rhythmic beats
	 Harmonic beats

2.3 	 CROSSFADING BETWEEN ARRAYS: VECTOR SYNTHESIS

2.4 	 VARIABLE SPECTRUM ADDITIVE SYNTHESIS
	 vs.oscbank~: a bank of oscillators
	 Using masking to control

ACTIVITIES
• Analyzing algorithms
• Completing algorithms

TESTING
• Integrated cross-functional project: reverse engineering

SUPPORTING MATERIALS
• List of Pd native objects
• List of Virtual Sound Library objects
• List of messages for specific objects

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

NOISE GENERATORS, FILTERS,
AND SUBTRACTIVE SYNTHESIS

3.1 	SOUND SOURCES FOR SUBTRACTIVE SYNTHESIS
3.2 	LOWPASS, HIGHPASS, BANDPASS, AND BANDREJECT FILTERS
3.3 	THE Q FACTOR
3.4 	FILTER ORDER AND CONNECTION IN SERIES
3.5 	SUBTRACTIVE SYNTHESIS
3.6 	EQUATIONS FOR DIGITAL FILTERS
3.7 	FILTERS CONNECTED IN PARALLEL, AND GRAPHIC EQUALIZATION
3.8 	OTHER APPLICATIONS OF CONNECTION IN SERIES: PARAMETRIC EQ
	 AND SHELVING FILTERS
3.9 	OTHER SOURCES FOR SUBTRACTIVE SYNTHESIS: IMPULSES AND
	 RESONANT BODIES

3T

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	Contents of Chapters 1 and 2 (Theory)
	
LEARNING OBJECTIVES
Knowledge
•	To learn about the theory of subtractive synthesis

•	To learn about the theory and use of the main filter parameters

•	To learn about the differences between the theory of ideal filters and the actual
responses of digital filters

•	To learn about the theory and the response of FIR and IIR filters

•	To learn how to use filters routed in series or in parallel

•	To learn about the theory and use of graphic and parametric equalizers

•	To learn how to use filters on different types of signals

•	To learn the main elements of a typical subtractive synthesizer

Skills
•	To be able to hear the basic effects caused by filters, and to describe their

characteristics

CONTENTS
•	Subtractive synthesis

•	Lowpass, highpass, bandpass, and bandreject filters

•	High shelving, low shelving, and peak/notch filters

•	The Q factor

•	Filter order

•	Finite impulse response and infinite impulse response filters

•	Graphic and parametric equalization

•	Filtering signals produced by noise generators, sampled sounds, and impulses

ACTIVITIES
•	Interactive examples

TESTING
•	Questions with short answers

•	Listening and analysis

SUPPORTING MATERIALS
•	Fundamental concepts

•	Glossary

•	Discography

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

3.1 SOUND SOURCES FOR SUBTRACTIVE SYNTHESIS

In this chapter we will discuss filters, a fundamental subject in the field
of sound design and electronic music, and subtractive synthesis, a widely-
used technique that uses filters. A filter is a signal processing device that
acts selectively on some of the frequencies contained in a signal, applying
attenuation or boost to them.1 The goal of most digital filters is to alter the
spectrum of a sound in some way. Subtractive synthesis was born from
the idea that brand-new sounds can be created by modifying, through the
use of filters, the amplitude of some of the spectral components of other
sounds.

Any sound can be filtered, but watch out: you can’t attenuate or boost
components that don’t exist in the original sound. For example, it doesn’t
make sense to use a filter to boost frequencies around 50 Hz when you are
filtering the voice of a soprano, since low frequencies are not present in the
original sound.

In general, the source sounds used in subtractive synthesis have rich spectra
so that there is something to subtract from the sound. We will concentrate on
some of these typical source sounds in the first portion of this section, and we
will then move on to a discussion of the technical aspects of filters.

Filters are used widely in studio work, and with many different types of
sound:

 > Sounds being produced by noise generators, by impulse generators, by
oscillator banks, or by other kinds of signal generators or synthesis

 > Audio files and sampled sounds

 > Sounds being produced by live sources in real time (the sound of a musician
playing an oboe, captured by a microphone, for example)

NOISE GENERATORS: WHITE NOISE AND PINK NOISE

One of the most commonly used source sounds for subtractive synthesis is
white noise, a sound that contains all audible frequencies, whose spectrum
is essentially flat (the amplitudes of individual frequencies being randomly
distributed). This sound is called white noise in reference to optics, where the
color white is a combination of all of the colors of the visible spectrum. White
noise makes an excellent source sound because it can be meaningfully filtered
by any type of filter at any frequency, since all audible frequencies are present.
(A typical white noise spectrum is shown in figure 3.1.)

1 Besides altering the amplitude of a sound, a filter modifies the relative phases of its components.

279Chapter 3T - Noise generators, filters, and subtractive synthesis

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

280 Theory - Section 3.1 - Sound sources for subtractive synthesis

Fig. 3.1 The spectrum of white noise

Another kind of noise that is used in similar ways for subtractive synthesis is pink
noise. This kind of sound, in contrast to white noise, has a spectrum whose
energy drops as frequency rises. More precisely, the attenuation in pink noise is
3 dB per octave;2 it is also called 1/f noise, to indicate that the spectral energy
is proportional to the reciprocal of the frequency. (See figure 3.2.) It is often
used, in conjunction with a spectral analyzer, to test the frequency response of a
musical venue, in order to correct the response based on some acoustic design.

Fig. 3.2 The spectrum of pink noise

2 Another way to define the difference between white noise and pink noise is this: while the
spectrum of white noise has the same energy at all frequencies, the spectrum of pink noise
distributes the same energy across every octave. A rising octave, designated anywhere in the
spectrum, will occupy a raw frequency band that is twice as wide as its predecessor’s; pink noise
distributes equal amounts of energy across both of these frequency bands, resulting in the constant
3 dB attenuation that is its basic property.

frequency

dB

frequency

dB

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

Chapter 3T - Noise generators, filters, and subtractive synthesis 281

In digital systems, white noise is generally produced using random number
generators: the resulting waveform contains all of the reproducible frequencies
for the digital system being used. In practice, random number generators use
mathematical procedures that are not precisely random: they generate series
that repeat after some number of events. For this reason, such generators are
called pseudo-random generators.

By modifying some of their parameters, these generators can produce different
kinds of noise. A white noise generator, for example, generates random
samples at the sampling rate. (If the sampling rate is 48,000 Hz, for example,
it will generate 48,000 samples per second.) It is possible, however, to modify
the frequency at which numbers are generated – a generating frequency equal
to 5,000 numbers a second, for example, we would no longer produce white
noise, but rather a noise with strongly attenuated high frequencies.

When the frequency at which samples are generated is less than the sampling
rate, “filling in the gaps” between one sample and the next becomes a problem,
since a DSP system (defined in the glossary for Chapter 1T) must always be able
to produce samples at the sampling rate. There are various ways of resolving
this problem, including the following three solutions:

 > Simple pseudo-random sample generators
 These generate random values at a given frequency, maintaining a constant

value until it is time to generate the next sample. This results in a waveform
resembling a step function. In figure 3.3 we see the graph of a 100 Hz
noise generator; the random value is repeatedly output for a period equal
to 1/100 of a second, after which a new random value is computed. If the
sampling rate were 48,000 Hz, for example, each random value would be
repeated as a sample 48,000 / 100 = 480 times.

Fig. 3.3 Generation of pseudo-random values

am
pl

itu
de

time

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

282 Theory - Section 3.1 - Sound sources for subtractive synthesis

 > Interpolated pseudo-random sample generators
 These generators use interpolation between each random number and the

next. (See the section on linear interpolation in Chapter 2.1.) As you can
see in figure 3.4, intermediate samples, produced during the gaps between
random value computations, follow line segments that move gradually
from one value to the next.

Fig. 3.4 Generation of pseudo-random values with linear interpolation

Interpolation between one value and the next can be linear, as shown in the
figure, or polynomial, implemented using polynomial functions to connect
the values using curves rather than line segments. (Polynomial interpolation is
shown in figure 3.5, however, we will not attempt to explain the details here.)
The kinds of polynomial interpolation most common to computer music are
quadratic (which use polynomials of the second degree) and cubic (which use
polynomials of the third degree). Programming languages for synthesis and
signal processing usually have efficient algorithms for using these interpolations
built in to their runtimes, ready for use.

Fig. 3.5 Generation of pseudo-random values with polynomial interpolation

am
pl

itu
de

time

am
pl

itu
de

time

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

Chapter 3T - Noise generators, filters, and subtractive synthesis 283

 > Filtered pseudo-random sample generators
 In this kind of approach, the signal produced is filtered using a lowpass

filter. We will speak further of this kind of generator in the section
dedicated to lowpass filters.

INTERACTIVE EXAMPLE 3A – NOISE GENERATORS – PRESETS 1-4

OSCILLATORS AND OTHER SIGNAL GENERATORS
In Section 1.2T, we examined the “classic” waveforms that are often found in
synthesizers, such as the square wave, the sawtooth wave, and the triangle wave.
Section 2.1T explained how these waveforms, when geometrically perfect (perfect
squares, triangles, etc.), contain an infinite number of frequency components.
The presence of infinitely large numbers of components, however, causes
nasty problems when producing digital sound, since an audio interface cannot
reproduce frequencies above half of its sampling rate.3 (We will discuss this topic
in much greater detail in Chapter 5.) When you attempt to digitally reproduce
a sound that contains component frequencies above the threshold for a given
audio interface, undesired components will appear, which are almost always
non-harmonic. To avoid this problem, band-limited oscillators are often used
in digital music. Such oscillators, which produce the classic waveforms, are built
so that their component frequencies never rise above half of the sampling rate.
The sounds generated by this kind of oscillator therefore make a good point of
departure for creating sonorities appropriate for filtering, and as a result, they are
the primary source of sound in synthesizers that focus on subtractive synthesis.
In Section 3.5 we will analyze the structure of a typical subtractive synthesizer.

It is, of course, also possible to perform subtractive synthesis using synthetic
sounds, rich in partials, that have been realized using other techniques such as
non-linear synthesis or physical modeling. We will cover these approaches in
following chapters.

FILTERING SAMPLED SOUNDS
Beyond subtractive synthesis, one of the everyday uses of filters and equalizers
is to modify sampled sounds. Unlike white noise, which contains all frequencies
at a constant amplitude, a sampled sound contains a limited number of
frequencies, and the amplitude relationships between components can vary
from sound to sound. It is therefore advisable, before filtering, to be conscious
of the frequency content of a sound to be processed.

3 It is for this reason that sampling rate of an audio interface is almost always more than twice the
maximum audible frequency for humans.

8

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

284 Theory - Section 3.2 - Lowpass, highpass, bandpass, and bandreject filters

Remember that you can only attenuate or boost frequencies that are already
present. This is true for all sounds, sampled or otherwise, including those
captured from live sources.

(...)

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

Chapter 3T - Noise generators, filters, and subtractive synthesis 285

other sections in this chapter:

3.2	 LOWPASS, HIGHPASS, BANDPASS, AND BANDREJECT
	 FILTERS
	 Lowpass Filtering
	 Highpass filtering
	 Bandpass filtering
	 Bandreject filtering

3.3 	 THE Q FACTOR

3.4 	 FILTER ORDER AND CONNECTION IN SERIES
	 Filters of the first order
	 Second-order filters
	 Second-order resonant filters
	 Higher order filters: connecting filters in series

3.5 	 SUBTRACTIVE SYNTHESIS
	 Anatomy of a subtractive synthesizer

3.6 	 EQUATIONS FOR DIGITAL FILTERS

3.7 	 FILTERS CONNECTED IN PARALLEL, AND GRAPHIC
 	 EQUALIZATION
	 Graphic equalization

3.8 	 OTHER APPLICATIONS OF PARALLEL FILTERS:
	 PARAMETRIC EQ AND SHELVING FILTERS
	 Shelving filters
	 Parametric equalization

3.9	 OTHER SOURCES FOR SUBTRACTIVE SYNTHESIS:
 	 IMPULSES AND RESONANT BODIES

ACTIVITIES
•	Interactive examples

TESTING
•	Listening and analysis

SUPPORTING MATERIALS
•	Fundamental concepts
•	Glossary

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

NOISE GENERATORS, FILTERS,
AND SUBTRACTIVE SYNTHESIS

3.1		 SOUND SOURCES FOR SUBTRACTIVE SYNTHESIS
3.2		 LOWPASS, HIGHPASS, BANDPASS, AND BANDREJECT FILTERS
3.3		 THE Q FACTOR OR RESONANCE FACTOR
3.4		 FILTER ORDER AND CONNECTION IN SERIES
3.5		 SUBTRACTIVE SYNTHESIS
3.6		 EQUATIONS FOR DIGITAL FILTERS
3.7		 FILTERS CONNECTED IN PARALLEL, AND GRAPHIC 		
		 EQUALIZATION
3.8		 OTHER APPLICATIONS OF CONNECTION IN SERIES: SHELVING 	

	 FILTERS AND PARAMETRIC EQ
3.9		 OTHER SOURCES FOR SUBTRACTIVE SYNTHESIS: IMPULSES AND 	

	 RESONANT BODIES

3P

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	Contents of Chapters 1 and 2 (theory and practice), Chapter 3T, Interlude A

LEARNING OBJECTIVES
Skills

•	Generate and control different types of complex signals for subtractive synthesis
(white noise, pink noise, impulses, etc.)

•	Construct algorithms using lowpass, highpass, bandpass, band-reject, shelving,
and resonant filters, and how to control them using various parameters, Q, and
filter order

•	Implement FIR (non-recursive), as well as IIR (recursive) filters

•	Build a simple subtractive synthesizer

•	Write algorithms using filters connected in series and in parallel

•	Build graphic and parametric equalizers

Competence

•	To be able to realize a short sound study based on the techniques of subtractive
synthesis and save it to an audio file.

CONTENTS
•	Sources for subtractive synthesis

•	Lowpass, highpass, bandpass, band-reject, shelving, and resonant filters

•	The Quality factor and filter order

•	FIR and IIR filters

•	Connecting filters in series and in parallel

•	Graphic and parametric equalizers

ACTIVITIES
•	Activities using computer: replacing parts of algorithms, correcting, completing

and analyzing algorithms, constructing new algorithms

TESTING
•	Composing a brief study - Integrated cross-functional project: reverse engineering

SUPPORTING MATERIALS
•	List of Pd native objects - List of Virtual Sound library objects – List of messages

for specific objects - Glossary

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

3.1 SOUND SOURCES FOR SUBTRACTIVE SYNTHESIS

As you learned in section 3.1 of the theory chapter, the purpose of a filter is to
modify the spectrum of a signal in some manner. So, let us first introduce an
object of the Virtual Sound library that is used to view such spectrum: [vs.
spectroscope~]. To create this object, simply write its name inside a generic
object box.

fig. 3.1: the [vs.spectroscope~] object

Now open the file 03_01_spectroscope.pd (see fig. 3.2).

fig. 3.2: file 03_01_spectroscope.pd

341Capitolo 3P - Generatori di rumore, filtri e sintesi sottrattiva

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

342 Practice - Section 3.1 - Sound sources for subtractive synthesis

In this case, the spectroscope has been connected to a [vs.sel3~] object
which allows us to select one of three oscillators: a sine wave ([osc~]), a non-
bandlimited sawtooth wave ([phasor~]) and a bandlimited sawtooth wave
([vs.blsaw~])1. In order to select one of the three oscillators, three message
boxes have been connected to the left input of [vs.sel3~]; by setting up
the frequency of the number box and selecting the oscillators in turn, we can
view their spectra. Notice that the sine wave shows a single partial, whereas the
[phasor~] object, which generates a non-bandlimited waveform, shows the
richest spectrum, comprising many partials2.

Make some tests by changing the frequency and selecting the various
waveforms while looking at the images displayed in the spectroscope. As
previously mentioned, what is displayed is the spectrum of the input sound;
the partials are displayed in ascending order from left to right over a frequency
range from 0 to 22050 Hz.

Try adding the [vs.spectroscope~] object to the patches you have already
created, so as to get the hang of the relation between the sound and its spectral
content; you can also add the object to the patches of the previous chapters.
For example, try adding it to 01_13_audiofile.pd (connect the spectroscope
to the left output of the object [vs.splayer~]) or IA_06_random_walk.
pd (connect it to the output of [pd monosynth]): do you understand the
relation between the sound and the shape of its spectrum in this last patch?

Let us move on to a discussion about white noise, which in Pd can be generated
using the [noise~] object (see figure 3.3).

fig. 3.3: white noise generator

1 See section 1.2
2 The [vs.spectroscope~] object employs a spectral analysis algorithm called the Fast Fourier

Transform, which we will cover in detail in a later chapter

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

343Chapter 3P - Noise generators, filters, and subtractive synthesis

For the patch in this image (which we strongly encourage you to recreate) we
connected the noise generator to the object [vs.spectroscope~] and we
can now see how the noise spectrum contains energy at every frequency. Unlike
the other sound generators we dealt with so far, the white noise generator
does not need any parameter; in fact, it is solely used to generate a signal from
random values in the range between -1 and 1 at the current sample rate (refer
to section 3.1 of the theory chapter). Another type of noise generator we can
find in the Virtual Sound library is the object [vs.pink~] which generates
pink noise (fig. 3.4).

fig. 3.4: pink noise

Note that the spectrum of pink noise, unlike that of white noise, gradually
diminishes in amplitude as frequencies get higher, and that this attenuation (as
we know from section 3.1T) is 3 dB per octave.
Recreate the simple patch shown in the figure and listen carefully to the
difference between pink noise and white noise. Which of the two seems more
pleasant (or maybe just less unpleasant), and why?
Add a ([vs.scope~]) oscilloscope to the two patches you have just created
and look at the differences between the waveforms of the white and pink noise.
Fig. 3.5 shows these two waveforms side by side.

fig. 3.5 white noise and pink noise waveforms

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

344 Practice - Section 3.1 - Sound sources for subtractive synthesis

Without getting bogged down in technical details, while white noise is basically
a stream of random values, pink noise is generated using a more complex
algorithm in which a sample, although randomly generated, cannot stray too
far from the value of its predecessor. This results in the “serpentine” waveform
that we see in the figure. The behavior of the two waveforms demonstrates
their spectral content: when the difference between one sample and the next
is larger, the energy of the higher frequencies in the signal is greater3. White
noise has more energy at higher frequencies than pink noise.

Another interesting generator is [vs.rand1~]4, which generates random
samples at a selectable frequency and connects these values using line segments
(as shown in figure 3.6). Unlike [noise~] and [vs.pink~], which generate
random samples on every tick of the DSP “engine” (producing a quantity of
samples in one second that is equal to the sample rate), with [vs.rand1~]
it is possible to choose the frequency at which random samples are generated,
and to make the transition from one sample value to the next gradual, using
linear interpolation.

fig. 3.6: the [vs.rand1~] object

Obviously, this generator produces a spectrum that varies according to the
frequency setting; it shows a primary band of frequencies that ranges from
0 Hz up to the frequency setting, followed by additional bands that are
gradually attenuated and whose width are also equal to the frequency setting.
Figure 3.7 shows this interesting spectrum.

3 To understand this assertion, notice that the waveform of a high sound oscillates quickly, while
that of a low sound oscillates slowly. At equal amplitudes, the difference between succeeding
samples for the high frequency case will be larger, on average, than for the low frequency case.
4 The prefix vs means that the object is part of the Virtual Sound library, just like all the other objects

using this prefix.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

345Chapter 3P - Noise generators, filters, and subtractive synthesis

fig. 3.7: the spectrum generated by the [vs.rand1~] object

In the example, we can see that the frequency of the [vs.rand1~] object is
5,512.5 Hz (a quarter of the maximum frequency visible in the spectroscope
in the figure), and the first band goes from 0 to 5,512.5 Hz. After this come
secondary bands, progressively attenuated, all 5,512.5 Hz wide. Changing the
frequency of [vs.rand1~] changes the width of the bands as well as their
number. If you double the frequency to 11,025 Hz, for example, you will see
precisely two bands, both 11,025 Hz in width.

Another noise generator is [vs.rand0~] (the last character before the tilde
is a zero), that generates random samples at a given frequency like [vs.
rand1~], but does not interpolate between the values produced. Instead, it
maintains the value of each sample until a new sample is generated, producing
stepped changes.

Its spectrum forms bands in the same way as that of [vs.rand1~] in figure
3.7, but as you can see in figure 3.8, the attenuation of the secondary bands is
much less because of the abrupt changes between sample values.

fig. 3.8: the [vs.rand0~] object

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

346 Practice - Section 3.1 - Sound sources for subtractive synthesis

A noise generator with polynomial interpolation [vs.rand3~] can also be
found in the Virtual Sound library (see fig. 3.9).

fig. 3.9: the [vs.rand3~] object

Thanks to the polynomial interpolation in this object, the transitions between
one sample and another appear “smooth”, as you can see on the oscilloscope.
The transitions form a curve rather than a series of connected line segments,
and the resulting effect is a strong attenuation of the secondary bands. Recreate
the patches found in figures 3.6 to 3.9 in order to experiment with various noise
generators.
“Classic” oscillators – those that produce sawtooth waves, square waves,
and triangle waves – are other examples of sound sources that are rich in
components, which makes them effective for use with filters. In section 1.2,
we examined three band-limited oscillators that generate such waveforms:
[vs.blsaw~], [vs.blsquare~] and [vs.bltri~]. We will use these
oscillators frequently during the course of this chapter.

In section 3.1T, we also learned about the possibility of filtering sampled sounds.
For this reason, we will also give examples in this chapter of filtering sampled
sounds, using the [vs.splayer~] object (first introduced in section 1.5P).

(…)

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

347Chapter 3P - Noise generators, filters, and subtractive synthesis

other sections in this chapter:
	
3.2 	 LOWPASS, HIGHPASS, BANDPASS, AND BANDREJECT
 	 FILTERS
	 Rhythmic beats
	 Harmonic beats

3.3 	 THE Q FACTOR OR RESONANCE FACTOR

3.4 	 FILTER ORDER AND CONNECTION IN SERIES
	 First-order filters
	 Second-order filters
	 Higher order filters: in-series connections

3.5 	 SUBTRACTIVE SYNTHESIS
	 The $0 symbol and the value object
	 Multiple choice: the vradio object
	 Anatomy of a subtractive synthesizer

3.6 	 EQUATIONS FOR DIGITAL FILTERS
	 Non-recursive (fir) filters
	 Recursive (iir) filters

3.7 	 FILTERS CONNECTED IN PARALLEL, AND GRAPHIC
	 EQUALIZATION
	 Graphic equalizer

3.8 	 OTHER APPLICATIONS OF CONNECTION IN SERIES:
 	 SHELVING FILTERS AND PARAMETRIC EQ
	 Parametric equalizer

3.9 	 OTHER SOURCES FOR SUBTRACTIVE SYNTHESIS:
 	 IMPULSES AND RESONANT BODIES

ACTIVITIES
• Replacing parts of algorithms
• Correcting algorithms
• Completing algorithms

TESTING
• Integrated cross-functional project: reverse engineering

SUPPORTING MATERIALS
• List of Pd native objects
• List of Virtual Sound Library objects
• List of messages for specific objects
• Glossary

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

ADDITIONAL ELEMENTS OF
PROGRAMMING WITH PURE DATA

IB.1		 INTRODUCTION TO MIDI
IB.2		 THE MODULO OPERATOR AND ITERATIVE OPERATIONS
IB.3		 ROUTING SIGNALS AND MESSAGES
IB.4		 THE RELATIONAL OPERATORS AND THE SELECT OBJECT
IB.5		 THE MOSES OBJECT
IB.6		 REDUCING A LIST TO ITS PARTS: THE VS.ITER OBJECT
IB.7		 ITERATIVE STRUCTURES
IB.8		 GENERATING RANDOM LISTS
IB.9		 CALCULATIONS AND CONVERSIONS IN PURE DATA
IB.10	 USING ARRAYS AS ENVELOPES: SHEPARD TONE

Interlude B

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	Contents of Chapters 1, 2, and 3 (theory and practice), Interlude A

LEARNING OBJECTIVES
Skills

•	Use simple midi objects and signals

•	Implement recursive operations in Pd

•	Build an arpeggiator that exploits randomly generated intervals
•	Route signals and messages to switched inlets and outlets
•	Compare values and analyze their relation

•	Take apart lists of data
•	Program repeating sequences using iterative structures
•	Generate random lists for simulating resonant bodies

•	Implement the Shepard tone, or “infinite glissando”

CONTENTS
•	Basic use of the MIDI protocol
•	Recursive operations and repeating sequences

•	Arpeggiators and random intervals

•	Comparing values, converting, and routing signals and messages

•	Taking lists apart, and generating random lists

•	Shepard Tones

ACTIVITIES
Activities using computer:
•	Replacing parts of algorithms, correcting, completing, analyzing algorithms,

constructing new algorithms

TESTING
•	Integrated cross-functional project: reverse engineering

SUPPORTING MATERIALS
•	List of Pd native objects – List of Virtual Sound library objects - Glossary

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

IB.1 INTRODUCTION TO MIDI

MIDI is a protocol for communicating between electronic and/or digital musical
instruments and computers. Using a physical MIDI cable, it is possible to connect
a synthesizer to a computer, enabling the computer to “play” the synthesizer,
for example. Using the MIDI protocol, the computer sends the synthesizer
information on what notes to play at what volume, and other information.
Furthermore, MIDI instruments do not need to exist in physical form: they
can also run as “virtual” instruments, which are computer applications that
simulate the behavior of real instruments and produce sound through audio
interfaces. Such digital instruments can communicate via MIDI, creating a virtual
connection (i.e. using no physical cables), between the application that sends
MIDI messages (like Pd) and the application that receives MIDI messages (the
virtual instrument itself).
As we will later investigate more closely, Pd features various objects that use
the MIDI protocol and since we are going to look at some of them in this
Interlude, it is important that you configure your system properly, so that Pd
can communicate with the MIDI devices in your computer. Generally speaking,
in order to connect Pd to a virtual MIDI device on a Windows OS, all you need
to do is open Pd and set the Output Device 1 (found in the Media/MIDI Settings
menu) to Microsoft GS Wavetable1.

For Mac users:

1. open the MIDI Audio configuration window (accessible from the folder
/Application/Utility or from Launchpad) and make sure the IAC driver is
enabled

2. open Pd and select IAC Driver in the Output Device 1 menu, found in the
Media/MIDI settings menu

3. open a software that can host virtual instruments (Garageband or the like).

Once you have configured MIDI, open the file IB_01_MIDI_note.pd; fig. IB.1
shows the upper section of the patch.

fig. IB.1: the upper section of the file IB_01_MIDI_note.pd

1 The name could be different depending on the version of Windows OS, but do not worry, you
will still recognize the device!

411Interlude B - Additional elements of programming with Pure Data

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

412 Practice - Section IB.1 - Introduction to MIDI

We have connected the [vs.midikeyboard] object (the musical keyboard)
to some number boxes, which are in turn connected to a [noteout] object.
As we have already learned, clicking on one of the [vs.midikeyboard] keys
will generate the MIDI note value for the selected key on the left outlet. (We first
used this object in section 1.4.) Pressing a key also generates a velocity value
on the right outlet that represents the dynamic level of a note; clicking on the
upper part of a [vs.midikeyboard] key will produce a higher velocity value,
while clicking on the lower part will produce a lower value. Values for velocity
can vary between 1 and 127.2 MIDI note and velocity values are sent to the left
and center inlets of a [noteout] object, which then sends the appropriate
command to any MIDI instruments (real or virtual) that are connected to it.3

In the MIDI protocol, this message is called the note-on command. When
you click close to the top of a [vs.midikeyboard] key, generating a
high enough velocity value (let’s say above 90), you should hear the sound
of a piano, assuming you have configured MIDI correctly4. This sound is not
coming from Pd, but it is generated by a virtual instrument that is part of
the operating system of your computer, which, by default, plays MIDI notes
using the sound of a piano. If you try playing more notes, you will realize that
everytime [noteout] receives note and velocity, a new note is played, without
interrupting or stopping the notes previously played. A slight problem remains.
Using [noteout], we have told the virtual instrument when to begin playing,
without telling it when to stop!
To interrupt a note and solve this problem, we will need to send another MIDI
command: a matching MIDI note with a velocity equal to 0, which is called the
note-off command. (A sort of “remove finger from key” command.)
In order to “turn a MIDI note off” using [vs.midikeyboard], we need to
change the way it manages MIDI note messages; select the mode called poly in
the right section of the object (up until now, you have been working in mono
mode).
The first time that you click on a [vs.midikeyboard] key, the note will
sound at the velocity chosen, and the second time that you click on the same
key, the note will be sent again, but this time with a velocity of 0, which
will make the sound stop: try this! This mode is called poly which stands for
polyphonic, since – unlike mono, i.e. monophonic – it allows you to play more
than one note at the same time).

2 The value 0 turns the note off.
3 The right inlet of the [noteout] object is used to set the MIDI channel, which we do not need
at this moment. Further details will be revealed later on.
4 If you cannot hear anything, it means you did not manage to configure the system properly. If
that is the case, go back at the beginning of the chapter.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

413Interlude B - Additional elements of programming with Pure Data

Now turn your attention to the lower half of the file IB_01_MIDI_note.pd,
shown in figure IB.2.

fig. IB.2: the lower half of the file IB_01_MIDI_note.pd

In this case, we have connected the [vs.midikeyboard] object (in mono
mode) to the [makenote] object. Every time this object receives a MIDI note-on
command, it generates a corresponding MIDI note-off command after a specified
length of time has elapsed. The object has three inlets, one for MIDI note number,
one for velocity, and one for the duration in milliseconds (i.e., the amount of time
to pass before the note-off command is sent). It also has two outlets, one for MIDI
note number and the other for velocity.
There are two arguments, a velocity and a duration expressed in milliseconds.
In the patch, we have set velocity to 1, and duration equal to 500 milliseconds
(or half a second). When the object receives a note-on, it will send its value
directly to the outlets, where, after the duration given by the argument (500
milliseconds in this example) a note-off is sent. Note that the velocity sent by the
[vs.midikeyboard] (which in the example shown in the figure is a value
of 81) overrides the value of 1 that had been provided as an argument. In fact,
we only added this value in order to be able to insert the second argument
(duration), since both arguments are obligatory!
Duration can also be modified by sending a new value to the right inlet, which
overwrites the value originally specified in the second argument.
Try playing some notes and changing the duration of the [makenote]
object: observe how velocity values first adopt the values generated by [vs.
midikeyboard], and then, after the time specified by the duration parameter,
they go back to 0.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

414 Practice - Section IB.2 - The modulo operator and iterative operations

Now insert an addition object to the lower part of the patch as shown in figure IB.3:

fig. IB.3: Transposing MIDI notes

This patch is similar to the one in the file IA_01_transposition.pd, which we
examined in the first section of interlude A. Also in this case, every key pressed
on the [vs.midikeyboard] object generates two notes simultaneously,
separated by a distance of 7 semitones, the interval of a perfect fifth. Each
time that a [vs.midikeyboard] key is pressed, in fact, the value of the
corresponding MIDI note is sent to the [makenote] object and simultaneously
to the addition object, that adds 7 to it and then sends its output to [makenote].
In creating these pairs of notes, the velocity and duration values need not be
repeated, since they are stored in the internal variables of [makenote] until new
values come along. They are recalled from the object every time a note value
arrives at the left, hot inlet. In the figure, for example, both notes (the middle C
and G) will have a velocity of 61 and a duration of 500 milliseconds.
From this example, you can see that the rule about “hot” inlets being on
the left is complementary with right-to-left execution, as discussed. The first
messages to be processed are those on the right, and processing these “cold”
inlets initializes the internal variables in the object (such as the value for velocity
used by [makenote]); the last message to be processed is to the “hot” inlet on
the left, which causes output to occur only after internal variables have been
updated.

(...)

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

415Interlude B - Additional elements of programming with Pure Data

other sections in this chapter:

IB.2 	 THE MODULO OPERATOR AND ITERATIVE OPERATIONS
	 Iterative operations
	 Constructing an arpeggiator

IB.3 	 ROUTING SIGNALS AND MESSAGES

IB.4 	 THE RELATIONAL OPERATORS AND THE SELECT OBJECT
	 The select object
	 A “probabilistic” metronome

IB.5 	 THE MOSES OBJECT
	 A variable-speed metronome
	 A simple Markov chain
	 A “stricter” type of counterpoint

IB.6 	 REDUCING A LIST TO ITS PARTS: THE VS.ITER OBJECT

IB.7 	 ITERATIVE STRUCTURES

IB.8 	 GENERATING RANDOM LISTS

IB.9 	 CALCULATIONS AND CONVERSIONS IN PURE DATA
	 The expr object
	 Converting intervals and signals

IB.10 	USING ARRAYS AS ENVELOPES: SHEPARD TONES
	 The tabread4~ in detail
	 Using arrays as consecutive envelopes
	 The Shepard tone

ACTIVITIES
• Analyzing algorithms
• Completing algorithms
• Replacing parts of algorithms
• Correcting algorithms

TESTING
• Integrated cross-functional project: reverse engineering

SUPPORTING MATERIALS
• List of Pd native objects
• List of Virtual Sound Library objects
• Glossary

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

CONTROL SIGNALS

4.1	 CONTROL SIGNALS: STEREO PANNING
4.2	 DC OFFSET
4.3	 CONTROL SIGNALS FOR FREQUENCY
4.4	 CONTROL SIGNALS FOR AMPLITUDE
4.5	 VARYING THE DUTY CYCLE (PULSE-WIDTH MODULATION)
4.6 	CONTROL SIGNALS FOR FILTERS
4.7	 OTHER GENERATORS OF CONTROL SIGNALS
4.8	 CONTROL SIGNALS: MULTICHANNEL PANNING

4T

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	Contents of Chapters 1, 2, and 3 (Theory)

LEARNING OBJECTIVES
Knowledge

•	To learn about the theory and practice of low frequency oscillators

•	To learn about the use of DC Offset with LFOs

•	To learn about the use of frequency modulation for vibrato

•	To learn about the use of amplitude modulation for tremolo

•	To learn about the use of pulse-width modulation

•	To learn how to use LFOs to control filters

•	To learn about the use of pseudo-random signal generators for control

•	To learn how to use LFOs to control location in stereo and multichannel systems

Skills

•	To be able to hear and describe LFO-controlled modulations of basic parameters

CONTENTS
•	Low frequency oscillators: depth, rate, and delay

•	Managing LFO parameters and using DC offset

•	Managing vibrato, tremolo, and PWM using LFOs

•	Managing filter parameters using LFOs

•	Positioning and moving sound in stereo and multichannel systems

•	Modulating control oscillators with pseudo-random LFOs

ACTIVITIES
•	Interactive examples

TESTING
•	Questions with short answers

•	Listening and analysis

SUPPORTING MATERIALS
•	Fundamental concepts

•	Glossary

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

4.1 CONTROL SIGNALS: STEREO PANNING

As we have seen throughout this book, envelope generators can be used to vary
the parameters of a sound, such as frequency or amplitude, in time. Signals that
come from envelope generators – signals that are expressly produced to vary
parameter values rather than to produce sound – are called control signals.

To this point, we have used line segments and exponential curves to describe
control signals. These techniques are efficient because they require only a few
values to describe parameter changes; think of the four segments that we
use for ADSR envelopes, or of the numbers that define an exponential curve,
which can completely describe a glissando. Other control signals, however, may
need to vary in more complex ways. Take the vibrato associated with a string
instrument as an example: there is a continuous change in the frequency of a
note played with vibrato that can best be described as an oscillation around a
central pitch. To simulate such a vibration using an envelope, we might need to
use tens, or even hundreds, of line segments, which would be both tedious and
impractical. Instead of resorting to such primitive methods, we might instead
choose to use a control oscillator, an oscillator whose output is produced for
the sole purpose of providing parameter values to audio oscillators or other
parameterized devices used in sound synthesis and signal processing.

Control oscillators are usually Low Frequency Oscillators (LFOs); their
frequency is usually below 30 Hz. They produce continuously changing control
values that trace waveforms in the same way that audio oscillators do. Every
instantaneous amplitude of a wave generated by a control oscillator corresponds
to a numeric value that can be applied to audio parameters as needed.

Here is an example demonstrating the use of an LFO: in Figure 4.1, you see a
graphic representation of an LFO controlling the position of a sound in space.
This LFO generates a sine wave that oscillates between MIN (representing its
minimum value) and MAX (its maximum value).

Fig. 4.1 An LFO for controlling the position of a sound in space

The minimum and maximum values, or the depth of the oscillator, define the
limits of the amplitude values being produced, while the rate of the oscillator
is a value that defines its frequency.

473Chapter 4T - Control signals

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

474 Theory - Section 4.2 - DC Offset

In the example, the instantaneous amplitude values of the sine wave generated
by the LFO is used as input to two multipliers that inversely scale the amplitude
of an audio oscillator on two output channels. Whenever the control signal
reaches MIN (its minimum value), the sound is panned completely left, and
whenever it reaches MAX (its maximum value), the sound is panned completely
right. While intermediate values are being produced (represented in the figure
by the central value INT), the sound is smoothly mixed between the two
channels.

It should be obvious that it would be possible to use other waveforms (triangle,
random, etc.) to control parameter values in the same way; a square wave,
for example, could control the location of a sound bouncing between left and
right channels without intermediate positions. In this case, there would be no
continuous change, as there is when using a sine wave; the values would simply
alternate between MIN and MAX.

INTERACTIVE EXAMPLE 4A • Panning using different LFO waveforms

The rate with which values change depends on the frequency assigned to a
given control oscillator. If you use a frequency of 1 Hz, you will move from MAX
to MIN and back again in one second; if you use a frequency of .2 Hz, you will
have 1 complete oscillation in 5 seconds. What if you use a frequency of 220?
In this case, the 220 oscillations per second would be too fast to allow us to
hear the location moving between left and right; this frequency would instead
enter the audio range and would generate new components in the spectrum
of the resulting sound. We will cover this phenomenon, amplitude modulation,
in Chapter 10.

INTERACTIVE EXAMPLE 4B • Panning using a sine wave LFO at various
frequencies

By using control oscillators, we can control the depth and the rate of a vibrato,
of a tremolo, or of variations in filter parameters, all of which we will cover in
the following sections.

(…)

8

8

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

475Chapter 4T - Control signals

other sections in this chapter:

4.2	 DC OFFSET

4.3 	 CONTROL SIGNALS FOR FREQUENCY
	 Vibrato
	 Depth of vibrato
	 Rate of vibrato

4.4 	 CONTROL SIGNALS FOR AMPLITUDE

4.5 	 VARYING THE DUTY CYCLE
	 (PULSE-WIDTH MODULATION)

4.6 	 CONTROL SIGNALS FOR FILTERS

4.7 	 OTHER GENERATORS OF CONTROL SIGNALS
	 Controlling a subtractive synthesizer with an lfo

4.8 	 CONTROL SIGNALS: MULTICHANNEL PANNING

ACTIVITIES
•	Interactive examples

TESTING
•	Listening and analysis

SUPPORTING MATERIALS
•	Fundamental concepts
•	Glossary

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

CONTROL SIGNALS

4.1		 CONTROL SIGNALS: STEREO PANNING
4.2		 DC OFFSET
4.3		 CONTROL SIGNALS FOR FREQUENCY
4.4		 CONTROL SIGNALS FOR AMPLITUDE
4.5		 VARYING THE DUTY CYCLE (PULSE WIDTH MODULATION)
4.6		 CONTROL SIGNALS FOR FILTERS
4.7		 OTHER GENERATORS OF CONTROL SIGNALS
4.8		 CONTROL SIGNALS: MULTICHANNEL PANNING

4P

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	Contents of Chapters 1, 2, and 3 (theory and practice), Chapter 4 (theory), interludes A & B

LEARNING OBJECTIVES
Skills

•	Move a sound within a stereo field

•	Implement Vibrato

•	Simulate instruments whose frequency is controlled, such as a theremin

•	Implement tremolo

•	Build pulse width modulation algorithms

•	Vary cutoff frequency, center frequency, and Q of filters using oscillating
control signals

•	Use pseudo-random signal generators for Control

•	Locate and move sounds in a system of 4 or more Channels using Control signals

Competence

•	To be able to create a short sound study based on the technique of controlling
parameters using LFOs

CONTENTS
•	Low frequency oscillators: depth, rate, and delay

•	Managing LFO parameters and using DC offset

•	Managing vibrato, tremolo, and pulse width modulation using LFOs

•	Managing filter parameters using LFOs

•	Pseudo-random control signals

•	Positioning and moving sound in stereo and multi-Channel systems

ACTIVITIES
•	Replacing parts of algorithms - Correcting algorithms - Analyzing algorithms -

Completing algorithms - Constructing new algorithms

TESTING
•	Integrated cross-functional project: composing a brief sound study

•	Integrated Cross-functional project: reverse engineering

SUPPORTING MATERIALS
•	List of Pd native objects – List of Virtual Sound library objects - Glossary

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

4.1 CONTROL SIGNALS: STEREO PANNING

You can use the output of an ordinary [osc~] object as a sine wave control
signal for positioning a signal within a stereo field, as described in section 4.1T.
The frequency of the [osc~] object, in this case, should be low enough to be
below the audio range.
As you learned in section 1.6, you can specify the position of a signal within
the stereo field using a value n between zero and one. The square root of this
value is the amplitude multiplication factor of a channel, while the square root
of 1 – n is the same for the other channel.
The patch shown in figure 4.1 (which we strongly encourage you to recreate),
shows the algorithm used to control the position within the stereo field of a
signal, which, in this case, is a bandlimited sawtooth wave.

fig. 4.1: the algorithm for stereo panning

Now we need to connect the signal generated by [osc~] to the inlet of the
[expr~]1 object and to the inlet of the right [sqrt~], in order to control
the stereo positioning. As we already know, [osc~] generates a sine wave
with values ranging from -1 to 1, but what we need is a signal whose values
range from 0 to 1. We might as well adjust the oscillation range of [osc~]
by doing some simple math, but we are going to cover such method in the
next section. In this case, we will use an object we have already discussed in
Interlude IB.9.

1 Remember that the [expr~] works just like [expr], but it is used for signals. The variables used

for a signal are always preceded by the prefix ‘$v’, followed by the number of the variable. The left
inlet should always be a signal, hence the first variable will always be ‘$v1’, while the others (i.e.,
the other inlets) can be either “f” or “i” values.

493Chapter 4P - Control signals

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

494 Practice - Section 4.1 - Control signals: stereo panning

Complete the patch to resemble that shown in figure 4.2.

fig. 4.2: stereo panning controlled by an LFO

As we already know, the [vs.kscale~] object takes four arguments. The first
two arguments define the input range, while the last two define the output range.
In our case, the arguments [-1 1 0 1] indicate that if we send a signal that varies
between -1 and 1 to [vs.kscale~], the output signal will be rescaled between
0 and 1, which is exactly what we are looking for. The [osc~] object generates
a control sine wave at a frequency of 1 Hz. So, it takes one second for the sound
to go from the left channel to the right channel and back. If we connect a number
box to [osc~], we can adjust the frequency of the oscillation. Try using various
frequencies, but do not exceed 20 Hz: in fact, higher frequencies will produce
modulation phenomena, which are part of a topic we will discuss later.

At this point, you can simplify the patch by using the [vs.pan~] object from
the Virtual Sound library, an object that implements a stereo panning algorithm;
the object takes the sound to be positioned on its left inlet and positions it in the
stereo field according to the control signal it takes on its right inlet (see fig. 4.3).

fig. 4.3: stereo panning using the [vs.pan~] object

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

495Chapter 4P - Control signals

You can see that the [vs.pan~] object performs the same function as the
algorithm shown in figure 4.2. We are using it just to free up room in the graphical
display of our patch. In this patch we also replaced the two [vs.gain~] objects
with [vs.sgain~], which unifies their behavior in a single object.
Try this patch, substituting control signals made with other waveforms, such as
the square wave shown in figure 4.4.

fig. 4.4: controlling panning with a square wave LFO

In this case, the sound moves from channel to channel without passing through
intermediate positions. The sudden discontinuity, however, generates an
undesirable click in the output signal. Fortunately, this can be eliminated by
filtering the control signal with a low-pass filter ([lop~]), which ‘smooths’ the
sharp corners of the square wave. (See Figure 4.5 for this modification.)

fig. 4.5: filtering an LFO

In this patch, we have set a cutoff frequency of 20 Hz, which means that the
control signal cannot ‘jump’ from one value to the other faster than 20 times
a second. Try changing the cutoff frequency for the filter to better understand
how it influences the path of the sound; the lower the cutoff frequency, the
smoother the transitions between channels will be.

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

496 Practice - Section 4.3 - Control signals for frequency

(…)

4.2	 DC OFFSET

4.3 	 CONTROL SIGNALS FOR FREQUENCY
	 Simulating a theremin

4.4 	 CONTROL SIGNALS FOR AMPLITUDE

4.5 	 VARYING THE DUTY CYCLE
	 (PULSE-WIDTH MODULATION)

4.6 	 CONTROL SIGNALS FOR FILTERS

4.7 	 OTHER GENERATORS OF CONTROL SIGNALS

4.8 	 CONTROL SIGNALS: MULTICHANNEL PANNING

ACTIVITIES
• Analyzing algorithms
• Completing algorithms
• Correcting algorithms

TESTING
• Integrated cross-functional project: reverse engineering

SUPPORTING MATERIALS
• List of Pd native objects
• List of Virtual Sound Library objects
• Glossary

 from “Pure Data: Electronic Music and Sound Design” Vol. 1 by F. Bianchi, A. Cipriani and M. Giri © Contemponet 2021 - All rights reserved

!"
#$%&

'(')%*+$,(#-
.
/,%0

"
1/,%'.

2
%3-

"
.
2
%&
$1/4

.

!

"#$%&'()*&
+
#$,

&-.&'(&
/
#$0

&.&

!"#$%&
'"()*+ ',)-./&$&+ 0)*+ 12"%/&&$)3+ 4+ 52/6(/)%,7+ 89#:$-(*/+ 0)*+ ;0</="29+ 4+ >)</:"#/&+
0)*+ ?:$&&0)*$+ 4+ 8**$-$</+ ',)-./&$&+ 0)*+ @/%-"2+ ',)-./&$&+ 4+ A"$&/+ ?/)/20-"2&+ 4+ 5$:-/2&+
4+ '(B-20%-$</+ ',)-./&$&+ 4+ @$2-(0:+ ',)-./&$C/2+ 12"32099$)3+ 4+ >6(0:$C/2&7+ D9#(:&/&+ 0)*+
E/&")0)-+F"*$/&+4+G")-2":+'$3)0:&+0)*+H5I&+4+1(2/+J0-0+12"32099$)3+!/%.)$6(/&

!"#$% #$% &"'% (#)$&% #*%+% $')#'$%,(% -,./0'$%1'1#2+&'1% &,%1#3#&+.% $4*&"'$#$%+*1% $,/*1%1'$#3*5% 6&% #$%7+)&%,(%+% $&)/2&/)'1%
&'+2"#*3%0'&",1%#*2,)7,)+&#*3%+%$/8$&+*&#+.%+0,/*&%,(%,*.#*'%$/77,)&#*3%0+&')#+.$9%"/*1)'1$%,(%$,/*1%':+07.'$%+*1%
#*&')+2&#-'%':+07.'$;%7),3)+0$%<)#&&'*%#*%=/)'%>+&+;%+$%<'..%+$%+%.#8)+)4%,(%=1%,8?'2&$%2)'+&'1%'$7'2#+..4%(,)%&"#$%8,,@5

AB/$#2%0+@#*3%#$%+%0/2"%()'')%+*1%<#1')C)+*3#*3%+2&#-#&4%&"+*%#&%<+$%8'(,)'%&"'%+1-'*&%,(%'.'2&),*#2$;%0'1#+&'1%
+$%&"'4%+)'%+.0,$&%+.<+4$%&,1+4%84%2,07/&')$5%!"')'%+)'%0+*4%7,$$#8#.#&#'$%,/&%&"')'%&,%':7.,)';%+*1%$&/14#*3%8,&"%
&"'% &"',)4%+*1% &"'%7)+2'%,(%+/1#,%7),3)+00#*3% #$% &"'%8'$&% (#)$&% $&'7%,(% &"'%<+4DE555F%A!"#$%7+)/.+)%$&+2@%,(%
&'2"*,.,3#'$%"+$%8''*%2)+(&'1%<#&"%&"'%3,+.$%,(%&"#$%8,,@%#*%0#*19%7)#0+)#.4;%+$%6%$''%#&;%&,%,7'*%+%7+&"%+.,*3%<"#2"%
&"'%)'+1')%E<"'&"')%+%$&/1'*&%,)%+*%#*1'7'*1'*&%)'+1')F%2+*%3'&%+%&"',)'+.%+*1%7)+2+.%/*1')$&+*1#*3%,(%&"'%
(/*1+0'*&+.%&'2"*#G/'$%(,)%0+@#*3%0/$#2%<#&"%+%2,07/&');%&,%0+@'%&"#$%7),2'$$%+$%1#)'2&%+*1%$&)+#3"&(,)<+)1%+$%
7,$$#8.';%+*1%&,%)'G/#)'%+%0#*#0/0%,(%$7'2#+.#H'1%@*,<.'13'%#*%+1-+*2'5D%
E(),0%&"'%(,)'<,)1%84%B#..')%=/2@'&&';%&"'%,)#3#*+.%+/&",)%,(%B+:%+*1%=/)'%>+&+F

5E8AG>'GI+FD8AGKD%#$%0+#*.4%#*-,.-'1%<#&"%0/$#2%2,07,$#&#,*%+*1%2,07/&')%0/$#25%I'%2,07,$'1%-+)#,/$%
7#'2'$%,(%8,&"%-,2+.%+*1% #*$&)/0'*&+.%'.'2&),*#2%0/$#2;%<"#2"%"+-'%8''*%7')(,)0'1% #*%0+*4%0/$#2% ('$&#-+.$%
+*1%#*$&#&/&#,*$%,(%$'-')+.%2,/*&)#'$%E$/2"%+$%&"'%I/11')$(#'.1%J*#-')$#&4;%&"'%K''1$%J*#-')$#&4;%+*1%&"'%B/$#2%
L,*$')-+&,)#'$%,(%M,0';%!/)#*;%+*1%=')/3#+F5%I'%<,*%&"'%&"#)1%7)#2'%+&%&"'%2,*&'$&%AN+.'*&#*,%O/22"#D%#*%PQQR;%
&"+*@$% &,%"#$%7#'2'%AL')2.'D5%S*%&"'%,22+$#,*%,(%T:7,%PQUV%"'%2,..+8,)+&'1%,*%+%7),?'2&%,*%1'$#3*#*3% &"'%
$,/*1%(,)%&"'%1+&+%2+7&/)'1%84%+%(,,1%&'$&#*3%1'-#2';%1'-'.,7'1%+&%&"'%J*#-')$#&4%,(%=+)0+5%I'%2)'+&'1%$'-')+.%
$,(&<+)'%.#8)+)#'$%&,%':&'*1%&"'%('+&/)'$%,(%=/)'%>+&+%+*1%B+:5%W.$,;%(,)%&"'$'%&<,%$,(&<+)'%+77.#2+&#,*$%"'%#$%
2/))'*&.4%<,)@#*3%,*%8#,$K#8;%<"#2"%#$%+%2,..'2&#,*%,(%,8?'2&$%&"+&%#07.'0'*&%+)&#(#2#+.%.#('%+.3,)#&"0$5

8H>''8AJEI+GD1ED8AD+ 2,C+/&",)'1%AN#)&/+.% X,/*1D;%+% &':&8,,@%,*%L$,/*1%7),3)+00#*35%I#$% 2,07,$#&#,*$%
"+-'%8''*%7')(,)0'1%+&%0+?,)% ('$&#-+.$% +*1%'.'2&),*#2%0/$#2% -'*/'$;% +*1%)'.'+$'1%,*%L>$%+*1%>N>$% #$$/'1%84%
L,07/&')%B/$#2% Y,/)*+.;% 6*&')*+&#,*+.%L,07/&')%B/$#2%L,*(')'*2'% +$%<'..% +$% ,&"')$5%I'% "+$%<)#&&'*%0/$#2% (,)%
&"'%='@#*3%S7')+%!"'+&');%+$%<'..%+$%(,)%(#.0$%+*1%1,2/0'*&+)#'$%#*%<"#2"%+08#'*&%$,/*1;%1#+.,3;%+*1%0/$#2%+..%
(/$'% &,3'&"');% #*&')2"+*3'+8.45%I'% #$%+% &'*/)'1%7),('$$,)% #*%'.'2&),*#2%0/$#2%+&% &"'%L,*$')-+&,)4%,(%Z),$#*,*';%+%
(,/*1#*3%0'08')%,(%&"'%T1#$,*%X&/1#,%#*%M,0';%+*1%+%0'08')%,(%&"'%'1#&,)#+.%8,+)1%,(%&"'%?,/)*+.%S)3+*#$'1%X,/*1%
E7/8.#$"'1%84%L+08)#13'%B/$#2%=)'$$F5%I'%"+$%3#-'*%$'0#*+)$%+&%0+*4%T/),7'+*%+*1%W0')#2+*%/*#-')$#&#'$;%#*2./1#*3%
&"'%J*#-')$#&4%,(%L+.#(,)*#+%C%X+*&+%O+)8+)+;%X#8'.#/$%W2+1'04%#*%I'.$#*@#;%+*1%W22+1'0#+%1#%X5%L'2#.#+%#*%M,0'5

L8MEDNDI+ ?DED% #$% +% 7),('$$,)% ,(% 2,07,$#&#,*% +$% <'..% +$% +% &'+2"')% ,(% B+:% 7),3)+00#*3% &'2"*#G/'$% +&%
&"'% 2,*$')-+&,)#'$% ,(% K+&#*+% +*1% Z),$#*,*'5% I'% #$% +*% #*$&)/0'*&+.% +*1% '.'2&),+2,/$% 2,07,$')% ,(%0/$#2;%
$7'2#+.#H#*3% #*% 1#3#&+.% $,/*1% 7),2'$$#*3;% #07),-#$+&#,*% +*1% 2,07/&')C+$$#$&'1% 2,07,$#&#,*5% I'% "+$% <)#&&'*%
2,07/&')%+77.#2+&#,*$%(,)%+.3,)#&"0#2%2,07,$#&#,*%+*1%.#-'%7')(,)0+*2';%+*1%"+$%7/8.#$"'1%*/0'),/$%&/&,)#+.$%
,*%B+:5%I'% (,/*1'1%W0+H#*3%[,#$'$;% +% $,(&<+)'% ",/$'% &"+&% 1'-'.,7$%0/$#2% +77.#2+&#,*$% +*1% 7./3C#*$% (,)%
0,8#.'%1'-#2'$%+*1%2,07/&')$5%

<<<52,*&'07,*'&52,0

5#'.,$1,-%6/'.,7/%8%9+$11'.2#-%:/;#/'./%8%0'"#/</-%=/#/

!"#$%&'(')%*+$,(#-./,%0"1/,%'.2%3-".2%&$1/4.
>7$-#?%'.2%!#',(/,$%8%@-+"A$%B

\%]P5QQ%-+&%#*2./1'1

8

SubSynth_Interface SubSynth_Engine

pd osc1

saw
tri
rect
noise

0 detune

pd osc2

saw
tri
rect
noise

0.06 detune

pd mix

0.5

c

pd pw

42

pd lowpass_filter

12 db
24 db

310 cutoff

0 keyfollow

10 env_depth

6 Q

pd highpass_filter

60 cutoff

metro 1000

4000
time

vs.between 36 85

36
pitch_min

49
pitch_max

pd send_data

pd preset

subsynth.filter~

*~

-inf
dac~

1
f.order

6
Q

60
cuthp

pd calc_lpfreq

42
pitch

310
cut_lp

0
kfollow

10
envdepth

pd detuning

0
det1

42
pitch

0.06
det2

subsynth.oscil~

vs.xfade~

3
wf1

3
wf2

0.42
pw

0.42
pw

0.5
mix

vline~

r $0-trig

tabread4~ $0-env

subsynth.oscil~

OSCILLATORS

FILTERS

ENVELOPE

$0-env

v $0-time

v $0-time

vs.env.adsr $0-env
10atk

10dec

75sus

20rel

0 atk_curve

0 dec_curve

0 rel_curve

switch~

$0-spectrum

on/off config

0, 512 $1

send~ spectrum

receive~ spectrum

C! " # $ % & ' " (%)

5#'.,$1,-%6/'.,7/%8%9+$11'.2#-%:/;#/'./%8%0'"#/</-%=/#/

!"#$%&'(')%
*+$,(#-./,%0"1/,%
'.2%3-".2%&$1/4.
1*23.4$'(5$6.')7&)2$$$839:;2$!

