
!"##

!"""#$%&'()*%&('#$%) C! " # $ % & ' " (%)

!"#$$%&'()*+,-(,%&,*.*/%0(,1,)*2,(,

!"#$%&'()*'+%(,-.,#'/.-"'0(1'2''''3$456#'7 .*

!"#$%&'()$*+,-)$*
.(/*0',(/*1#-)2(

7

8
9':

.;%.().
0
9'<

.%.
3"#45()

&
,4*/

0
$,4*%&

'
*6)

0
&
'
*7
#$,8

&

!"#$$%&'()*+,-(,%&,*.*/%0(,1,)*2,(,

3"#45()&,4*/0$,4*%&'*6)0&'*7#$,8&
9:#)(;*%&'*<(%45,4#*=,5:*/%>*?*.*@)"0A#*B

!"#$%&

+,-,'./! 012,%! .&2! 3.)*/(2! 3%1&245! 2($,).',%&6! 7/%$84! '($9&,:1(6! 4/,$,&-6! 4$;177,&-! <! =,),&-6!
>%/?*9%&?!.&2!@1/',$9.&&(/!<!+(/.?!A,&(45!($9%(46!/%%*,&-6!B/.&-(;6!$9%;146!$%)7!.&2!.//*.44!B,/'(;46!
9.4(;6!,'$9!49,B',&-6!;(C(;4(6!C.;,.7/(!2(/.?6!D.;*/14<3';%&-!./-%;,'9)!<!E;(.',C(!F4(4!%B!+?&.),$4!
>;%$(44%;45!(&C(/%*(!B%//%"(;46!$%)*;(44%;46!/,),'(;46!/,C(!&%;)./,G(;46!(H*.&2(;46!-.'(46!4,2(!$9.,&46!
21$8,&-!<!=9(!0;'!%B!I;-.&,G,&-!3%1&25!4,)*/(6!$%)*/(H!.&2!$%)*%1&2!)%',%&!*;%$(44(46!)%',%&!
",'9,&!',)7;(6!./-%;,'9),$!$%&';%/!%B!)%',%&6!)%',%&!4(:1(&$(4!<!@J+J!.&2!K.&2/,&-!@J+J!@(44.-(4!
,&!@.H!<!@.H!B%;!A,C(5!.12,%!(BB($'46!C,;'1./!,&4';1)(&'46!@J+J!(BB($'46!A,C(!0>J!.&2!A,C(!I7L($'!@%2(/#

M,'9!'9(,;!N/($';%&,$!@14,$!.&2!3%1&2!+(4,-&5!=9(%;?!.&2!>;.$',$(!",'9!@.H!.&2!@3>!O###P!0/(44.&2;%!E,*;,.&,!.&2!
@.1;,G,%!Q,;,!9.C(!*;%21$(2!.! 4(;,(4!%B!R,&'(;.$',C(!.&2!(&9.&$(2!7%%84S! '9.'!*;(4(&'! '9(! 4'12(&'!%B! $%)*1'(;!
)14,$!",'9!'9(!B,&(4'!.&2!)%4'!$%)*;(9(&4,C(!(/($';%.$%14',$!$1;;,$1/1)!,&!'9(!"%;/2#!T?!R,//14';.',&-S!'9(!'(H'!",'9!
.!"(./'9!%B!B,-1;(4!.&2!$/(.;/?!(H*/.,&(2!(:1.',%&46!'9(?!'.8(!'9(!;(.2(;!R1&2(;!'9(!9%%2S!.&2!;(C(./!'9(!./-%;,'9)4!
'9.'!).8(!%1;!$%)*1',&-!).$9,&(4!R4,&-S#!T?!14,&-!+.C,2!U,$.;(//,V4!,&$;(2,7/?!*%"(;B1/!.&2!,&'1,',C(!)(2,.<'%%/8,'!
W!@.H!'%!$;(.'(!91&2;(24!%B!4?&'9(4,46!4,-&./!*;%$(44,&-6!./-%;,'9),$!$%)*%4,',%&6!,&'(;.$',C(!*(;B%;).&$(6!.&2!.12,%!
.&./?4,4!4%B'".;(!(H.)*/(46!E,*;,.&,!.&2!Q,;,!9.C(!*;%C,2(2!'9(!)(.&4!B%;!4'12(&'4!'%!/(.;&!7?!9(.;,&-6!7?!'%1$9,&-6!
7?!)%2,B?,&-6!7?!2(4,-&,&-6!7?!$;(.',&-6!.&2!7?!$%)*%4,&-#!O###P!J!B,;)/?!7(/,(C(!'9.'!'9,4!4(;,(4!7?!E,*;,.&,!.&2!Q,;,6!
'9(4(!R,&'(;.$',C(!.&2!(&9.&$(2!7%%84S6!O###P!4('!'9(!4'.-(!B%;!'9(!&(H'!-(&(;.',%&!%B!,&&%C.'%;4#!O###P!
J&!N/($';%&,$!@14,$!.&2!3%1&2!+(4,-&6!E,*;,.&,!.&2!Q,;,!B((2!'9(!9.&246!'9(?!B((2!'9(!(.;46!.&2!'9(?!B((2!'9(!),&24!
%B!'9(!4'12(&'4!,&!".?4!.&2!'%!.!2(-;((!'9.'!&%!$%)*1'(;!)14,$!'(H'7%%8!9.4!(C(;!2%&(#
OB;%)!'9(!X%;("%;2!7?!'$%()*+,-"./)012*6!T(;8/((!E%//(-(!%B!@14,$P

=9,4!,4!'9(!4($%&2!,&!.!4(;,(4!%B!C%/1)(4!2(2,$.'(2!'%!2,-,'./!4?&'9(4,4!.&2!4%1&2!2(4,-&#!!J'!,4!*.;'!%B!.!4';1$'1;(2!
'(.$9,&-!)('9%2!,&$%;*%;.',&-!.!4174'.&',./!.)%1&'!%B!%&/,&(!41**%;',&-!).'(;,./45!91&2;(24!%B!4%1&2!(H.)*/(4!.&2!
,&'(;.$',C(!(H.)*/(46!*;%-;.)4!";,''(&!,&!@.H6!.4!"(//!.4!.!/,7;.;?!%B!@.H!%7L($'4!$;(.'(2!(4*($,.//?!B%;!'9,4!7%%8#

34566378'9,:;<';37;,$%<.1'9%;(2!RY,;'1./!3%1&2S6!.!'(H'7%%8!%&!E4%1&2!*;%-;.)),&-#!K,4!$%)*%4,',%&4!9.C(!
7((&!*(;B%;)(2!.'!).L%;!B(4',C./4!.&2!(/($';%&,$!)14,$!C(&1(4!.&2!;(/(.4(2!%&!E+4!.&2!+Y+4!,441(2!7?!E%)*1'(;!@14,$!
Z%1;&./6!J&'(;&.',%&./!E%)*1'(;!@14,$!E%&B(;(&$(6!E[J6!N2,*.&6!NC(;-/.2(!.4!"(//!.4!%'9(;4#!K(!9.4!";,''(&!)14,$!B%;!'9(!
T(,L,&-!I*(;.!=9(.'(;6!.4!"(//!.4!B%;!B,/)46!'9(.';(6!.&2!2%$1)(&'.;,(4!,&!"9,$9!.)7,(&'!4%1&246!2,./%-6!.&2!)14,$!.//!
B14(!'%-('9(;6!,&'(;$9.&-(.7/?#!K(!,4!.!'(&1;(2!*;%B(44%;!,&!(/($';%&,$!)14,$!.'!'9(!E%&4(;C.'%;?!%B!X;%4,&%&(6!.!B%1&2,&-!
)()7(;!%B!'9(!N2,4%&!3'12,%!,&!\%)(6!.&2!.!)()7(;!%B!'9(!(2,'%;,./!7%.;2!%B!'9(!L%1;&./!I;-.&,4(2!3%1&2!!O*17/,49(2!
7?!E.)7;,2-(!@14,$!>;(44P#!M,'9! '9(!$%//($',C(!N2,4%&!3'12,%6!9(!$%)*%4(2!]! 41;;%1&2!4%1&2';.$84! B%;! 4,/(&'! B,/)4!
,&$/12,&-!T.''/(49,*!!>%'()8,&6!=9(!E.7,&('!%B!+;#!E./,-.;,6!.&2!J&B(;&%6!.//!*17/,49(2!%&!+Y+!7?!'9(!E,&('($.!2,!T%/%-&.#!
K(!9.4!-,C(&! 4(),&.;4!.'! 4(C(;./!N1;%*(.&!.&2!0)(;,$.&!1&,C(;4,',(46! ,&$/12,&-! '9(!F&,C(;4,'?!%B!E./,B%;&,.! <! 3.&'.!
T.;7.;.6!3,7(/,14!0$.2()?!,&!K(/4,&8,6!=$9.,8%C48?!E%&4(;C.'%;?!,&!@%4$%"6!+@F<A(,$(4'(;#

=3>';?;9,@;';!,4!.!$%)*%4(;6!'(.$9(;6!.&2!.12,%!4%B'".;(!2(C(/%*(;#!K(!'(.$9(4!E%)*%4,',%&!.'!'9(!E%&4(;C.'%;?!
%B! A.',&.! .&2! @.H! *;%-;.)),&-! .'! '9(! E%&4(;C.'%;,(4! %B! A.',&.! .&2! X;%4,&%&(#! K(! ";,'(4! ,&4';1)(&'./! .&2!
(/($';%.$%14',$!)14,$6! $%)*1'(;! .**/,$.',%&4! B%;! ./-%;,'9),$! $%)*%4,',%&6! (/($';%.$%14',$! ,)*;%C,4.',%&! .&2! /,C(!
*(;B%;).&$(6!.&2!9.4!*17/,49(2!4(C(;./!'1'%;,./4!%&!@.H#!K(!B%1&2(2!0).G,&-![%,4(46!.!4%B'".;(!9%14(!'9.'!2(C(/%*4!
)14,$!.**/,$.',%&4!.&2!*/1-<,&4!B%;!)%7,/(!2(C,$(4!.&2!$%)*1'(;4#!K(!,4!07/('%&V4!*.;'&(;!B%;!'9(!2(C(/%*)(&'!%B!@.H!
B%;!A,C(!2(C,$(4#!K(!".4!R.;',4'!,&!;(4,2(&$(S!.'!'9(!E,'^!J&'(;&.',%&./(!2(4!0;'(4!,&!>.;,46!.&2!.'!Q\0@N!,&!A?%&#!K(!
$%//.7%;.'(2!",'9!)()7(;4!%B!'9(![,$%2!J&4','1'(6!.!;(4(.;$9!$(&'(;!%B!'9(!_$%/(![%;)./(!31*^;,(1;(!,&!>.;,46!%&!.!
*;%L($'!.7%1'!'9(!*9,/%4%*9?!%B!4%1&2#

Alessandro Cipriani • Maurizio Giri

ELECTRONIC MUSIC AND SOUND DESIGN
Theory and Practice with Max 8 - Volume 2

This is a demo version of

ELECTRONIC MUSIC AND SOUND DESIGN

Theory and Practice with Max 8 - volume 2

by Alessandro Cipriani e Maurizio Giri

© ConTempoNet 2020

Cipriani, Alessandro. Giri, Maurizio.
Electronic Music and Sound Design : theory and practice with Max 8. Vol. 2.
/ Alessandro Cipriani, Maurizio Giri.
Includes bibliographical references and index.
ISBN 978-88-992121-4-8
1. Computer Music - Instruction and study. 2. Computer composition.

Original Title: Musica Elettronica e Sound Design - Teoria e Pratica con Max 8
Copyright © 2020 Contemponet s.a.s. Rome - Italy

Translation by Richard Dudas
New Max 8 sections translated by Alessandro Cipriani and Maurizio Giri

Copyright © 2013 - 2020 - ConTempoNet s.a.s., Rome - Italy 
First edition 2014
Second edition 2017
Third edition 2020

Figures produced by: Maurizio Refice
Audio and Interactive Examples: Vincenzo Core
Index: Salvatore Mudanò

Products and Company names mentioned herein may be trademarks of their
respective Companies. Mention of third-party products is for informational
purposes only and constitutes neither an endorsement nor a recommendation.
The use of general descriptive names, trade names, trademarks, etc., in this
publication, even if the former are not especially identified, is not to be taken
as a sign that such names, as understood by the Trade Marks and Merchandise
Marks Act, may accordingly be used freely by anyone.

All rights reserved. No part of this book may be reproduced in any form by
any electronic or mechanical means (including photocopying, recording, or
information storage and retrieval) without permission in writing from the
publisher.

ConTempoNet s.a.s., Rome (Italy)
e-mail	 posta@contemponet.com
	 posta@virtual-sound.com
URL: 	 www.contemponet.com
	 www.virtual-sound.com
facebook	 www.facebook.com/electronic.music.and.sound.design	
	

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

CONTENTS	
Foreword to the Second Volume by Richard Boulanger • VII
Translator’s Note by Richard Dudas • XI
Introduction and dedications • XIII

Chapter 5T - THEORY
DIGITAL AUDIO AND SAMPLED SOUNDS
LEARNING AGENDA • 2

5.1 Digital sound • 3
5.2 Quantization and decimation • 20

Fundamental concepts • 28
5.3	 Using sampled sounds: samplers and looping techniques • 29
5.4 Segmentation of sampled sounds: blocks technique and slicing • 34
5.5 Pitch manipulation in sampled sounds: audio scrubbing • 42

Glossary • 44

	 Chapter 5P - PRACTICE
DIGITAL AUDIO AND SAMPLED SOUNDS
LEARNING AGENDA • 48

5.1 Digital sound • 49
5.2 Quantization and decimation • 55
5.3	 Using sampled sounds: the sampler and looping • 67
5.4 The segmentation of sampled sounds: the blocks technique and slicing • 91
5.5 Pitch manipulation of sampled sounds: audio scrubbing • 117

List of Max objects • 129
List of attributes and messages for specific Max objects • 131
Glossary • 133

Interlude C - PRACTICE
MANAGING TIME, POLYPHONY, ATTRIBUTES AND 		

	 ARGUMENTS
LEARNING AGENDA • 136

IC.1 The passage of time (in Max) • 137
IC.2 Making a step sequencer • 146
IC.3 Polyphony • 158
IC.4 Polyphony and multichannel system • 181
IC.5 Abstraction and arguments • 195

List of Max objects • 199
List of attributes, messages and graphical elements for specific Max

	 objects • 200
Glossary • 203

Chapter 6T - THEORY
DELAY LINES
LEARNING AGENDA • 206

6.1 Delay time: from filters to echoes • 207
6.2 Echoes • 208
6.3 Looping using delay lines • 215

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

IV Contents

6.4 	 Flanger • 216
6.5 	 Chorus • 224
6.6 	 Comb filters • 226
6.7 	 Allpass filters • 230
6.8 	 The phaser • 237
6.9 	 Pitch shifting, reverse and variable delay • 241
6.10 	 The Karplus-Strong algorithm • 244
	 Fundamental concepts • 250
	 Glossary • 251
	 Discography • 253

	 Chapter 6P - PRACTICE
	 DELAY LINES
	 LEARNING AGENDA • 256
6.1 	 Delay time: from filters to echoes • 257
6.2 	 Echoes • 260
6.3 	 Looping using delay lines • 278
6.4 	 Flanger • 279
6.5 	 Chorus • 285
6.6 	 Comb filters • 288
6.7 	 Allpass filters • 293
6.8 	 The phaser • 295
6.9 	 Pitch shifting, reverse and variable delay • 301
6.10 	 The Karplus-Strong algorithm • 312
6.11 	 Delay lines for Max messages • 319
	 List of Max objects • 324
	 List of attributes, messages and arguments for specific Max objects • 326

	 Chapter 7T - THEORY
	 DYNAMICS PROCESSORS  
	 LEARNING AGENDA • 328
7.1	 Envelope follower • 329
7.2 	 Compressors and downward compression • 331
7.3 	 Limiters and live normalizer • 346
7.4 	 Expanders and downward expansion • 349
7.5 	 Gates • 352
7.6 	 Upward compression and upward expansion • 354
7.7 	 External side-chain and ducking • 357
7.8 	 Other creative uses of dynamics processors • 358
	 Fundamental concepts • 365
	 Glossary • 366
	 Discography • 369

	 Chapter 7P - PRACTICE
	 DYNAMICS PROCESSORS
	 LEARNING AGENDA • 372
7.1 	 Envelope followers • 373
7.2 	 Compressors and downward compression • 385

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

VElectronic Music and Sound Design - Contents

7.3 	 Limiters and live normalizer • 397
7.4 	 Expanders and downward expansion • 404
7.5 	 Gates • 406
7.6 	 Upward compression and upward expansion • 411
7.7 	 External side-chain and ducking • 412
7.8 	 Other creative uses of dynamics processors • 417
	 List of Max objects • 429
	 List of attributes, messages and arguments for specific Max objects • 430

	 Interlude D – ADVANCED PRESET MANAGEMENT, 		
	 BPATCHER, VARIABLE ARGUMENTS, DATA AND 		
	 SCORE MANAGEMENT
	 LEARNING AGENDA • 432
ID.1 	 Advanced preset management • 433
ID.2 	 Bpatcher, variable arguments and local arguments • 443
ID.3	 Managing data and scores with Max • 453
	 List of Max objects • 476
	 List of attributes, arguments, messages and commands for specific Max 	
	 objects • 477
	 Glossary • 480

	 Chapter 8T - THEORY
	 THE ART OF ORGANIZING SOUND: MOTION PROCESSES
	 LEARNING AGENDA • 482
8.1 	 What are motion processes? • 483
8.2 	 Simple motion • 488
	 Fundamental concepts • 497
8.3 	 Complex motion • 500
8.4 	 Exploring motion within timbre • 508
8.5 	 Compound motion • 515
8.6 	 Algorithmic control of motion • 521
8.7 	 Introduction to motion sequences • 524
	 Glossary • 541

	 Chapter 8P - PRACTICE
	 THE ART OF ORGANIZING SOUND: MOTION PROCESSES
	 LEARNING AGENDA • 544
8.1 	 Motion processes • 545
8.2 	 Simple motion • 545
8.3 	 Complex motion • 550
8.4 	 Exploring motion within timbre • 552
8.5 	 Compound motion • 556
8.6 	 Algorithmic control of motion • 558
8.7 	 Introduction to motion sequences • 560
	 List of Max objects • 560

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

VI Contents

	 Chapter 9T - THEORY
	 MIDI
	 LEARNING AGENDA • 562
9.1 	 The MIDI standard • 563
9.2 	 MIDI messages • 564
9.3 	 MIDI controllers • 578
	 Fundamental concepts • 583
	 Glossary • 584
	
	 Chapter 9P - PRACTICE
	 MIDI AND REAL-TIME CONTROL  
	 LEARNING AGENDA • 590
9.1 	 MIDI and Max • 591
9.2 	 MIDI message management • 593
9.3 	 MIDI and poliphony • 600
9.4 	 Controlling a monophonic synth • 620
	 List of Max objects • 623
	 List of attributes and messages for specific Max objects • 625

 	 Interlude E - PRACTICE
	 MAX FOR LIVE
	 LEARNING AGENDA • 628
IE.1 	 An introduction to MAX for LIVE • 629
IE.2 	 Basics – creating an audio effect with M4L • 630
IE.3 	 Virtual instruments with M4L • 659
IE.4 	 Max MIDI effects • 671
IE.5	 Live API and Live Object Model (LOM) • 676
	 List of Max objects • 713
	 List of Attributes, messages and actions for specific Max objects • 714
	 Glossary • 716
	
	 References • 719
	 Index • 723

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

VIIElectronic Music and Sound Design - Foreword to the Second Volume

FOREWORD TO THE SECOND VOLUME
by Richard Boulanger

With their Electronic Music and Sound Design: Theory and Practice with Max and
MSP the master teachers and composers – Alessandro Cipriani and Maurizio Giri
have produced a series of “interactive and enhanced books” that present the stu-
dent of computer music with the finest and most comprehensive electroacoustic
curriculum in the world. By “illustrating” the text with a wealth of figures and
clearly explained equations, they take the reader “under the hood” and reveal the
algorithms that make our computing machines “sing”. By using David Zicarelli’s
incredibly powerful and intuitive media-toolkit – Max to create hundreds of syn-
thesis, signal processing, algorithmic composition, interactive performance, and
audio analysis software examples, Cipriani and Giri have provided the means for
students to learn by hearing, by touching, by modifying, by designing, by creat-
ing, and by composing. On page after page, and with Max patch after Max patch,
they brilliantly guide the student to a deeper knowledge and understanding that
is guaranteed to release their musical creativity in new and profound ways.

As we all know, digital cameras are so “smart” today that it is virtually impos-
sible to take a bad picture. But how to frame and freeze a moment in time, and
then to have that frozen moment “speak” through time – no camera can do
that. A “photographer” does that. And it takes a great teacher, a great men-
tor to help a student “see” what is right before their eyes. How does a great
teacher do this? They practice what they preach, and they teach by example.
This is exactly what Cipriani and Giri do in this series. Electronic Music and
Sound Design is filled to overflowing with working and teaching examples,
models, and code. It is a treasure chest of riches that will enlighten and inspire
the 21st century musician, audio artist, and designer to make the most of their
“instrument” – the computer itself. They are teaching the next generation how
to play it!

Today, brilliant design provides us with intuitive tools and systems that “anyone”
can make work; but understanding how they actually work, and understand-
ing how one might actually work with them – that is the challenge. Innovation
doesn’t spring from accidents and good luck. For sure, turning knobs can pro-
duce some crazy sounds, but a collection of crazy sounds is far from musical.
As Varese would say, “music is organized sound”. I would humbly expand this
by saying that “music is structured sound”, “music is sculpted sound”; music
is the manifestation and articulation of “thought forms” that we resonate with
and share, “mind models” that spring fourth from “sound understanding”. The
masterpieces of tomorrow’s Audio Art will reveal a vision that comes into focus
as today’s students grow in their appreciation and understanding of how things
work and how to work with them, and Cipriani and Giri are paving the way for
an age of audio enlightenment.

I firmly believe that this series by Cipriani and Giri, these “interactive and
enhanced books”, in which definition and design, in which theory and practice,

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

VIII Foreword to the Second Volume

in which compositional advice supported by an analysis of historical master-
works are all so tightly coupled with audio examples and editable and working
Max and Max for Live patches, set the stage for the next generation of innova-
tors. This book is essential for young and creative computer musician who have
the tools and want to know how they work and how to work with them. In
Electronic Music and Sound Design, Cipriani and Giri feed the hands, they feed
the ears, and they feed the minds of the students in ways and to a degree that
no computer music textbook has ever done.

Volume 1 moved from basic audio to software synthesis, filtering, spatialization,
and some MIDI, with a great introduction to Max and a good assortment of Max
tricks. Along the way, they introduced and covered a lot of synthesis and signal
processing theory. The book is structured with a “theoretical and practical”
chapter to be studied in parallel. A unique collection of Max patches is provided,
in “presentation” mode, so that the theoretical concepts can be “explored”.
There is audio ear training, chapter tests, activities, suggested projects and mod-
ifications, and a unique glossary of terms, at the end of each chapter. In fact,
each chapter begins with a set of “learning objectives” and “competencies”,
and a list of prerequisites (usually the contents of the previous chapters). The
chapters are filled with exercises, activities, assignments and end with a quiz. It
is a great curricular model. I am a particular fan of Chapter 3 on Noise, Filters,
and Subtractive Synthesis as it is a great balance of practical, mathematical
and theoretical. The “practical” chapters feature full Max Patches ready to be
modified, repaired, expanded, and explored. In addition to the theoretical and
practical chapters, there are two “Interludes” that focus on Max programming.
In addition to all the patches featured in the “text”, Cipriani and Giri provide a
huge library of abstractions (they call them “macros”) that make programming
and design even more efficient. There are many solutions, optimizations, and
tricks revealed in this collection too, and it is worth some serious study as well.
It is truly amazing how much computer music you are learning and how much
Max you are learning – at the same time!

Volume 2 is structured much like Volume 1 – starting each with chapter objec-
tives and outcomes and ending with a quiz and a chapter-specific glossary of
terms. In fact, it picks up where the first volume left off – starting with chapter
5! In general it features a more in depth coverage of topics and builds on what
was learned in Volume 1. By this point, the student is more advanced in their
understanding and skills and so more depth is presented and more difficult chal-
lenges are assigned. As might be expected, in this volume three “Interludes”
take the reader even deeper into Max with a focus on time and sequencing,
advanced preset, data, time, polyphony, and score management and the idio-
syncrasies of working with bpatchers, concluding with a major interlude focus-
ing on Max for Live and the Live API that helps the reader to move all their
studies into a rich and robust production and performance environment. As in
Volume 1, the chapters are again organized in pairs with a theoretical chapter
supporting a practical chapter.

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

IXElectronic Music and Sound Design - Foreword to the Second Volume

Chapter 5 focuses on Digital Audio and Sampling and features some really
exciting “sample-cutters” and “scrubbers”. Chapter 6 focuses on Delay Lines
and associated effects such as comb-filtering and pitch shifting and culminat-
ing in delay-line based synthesis – the famous Karplus-Strong plucked string
algorithm. Lots of great sounds here. Chapter 7 focuses on Dynamic Processors,
Envelope Followers, Compressors, Limiters, and their creative use – such as side-
chaining. There are a lot of practical and useful performance tools here.

The game changer in the series, and the masterpiece of this book is what is
covered in Chapter 8. Here Cipriani and Giri begin to teach the reader about the
world of computer music and how to “speak” the language with some fluency
– how to compose Audio Art. It is titled: “The Art of Organizing Sound: Motion
Processes”. In it Cipriani and Giri present and analyze a number of masterworks,
link to them on their website, and showcase some of the processes that define
their uniqueness. Further, the compositional approach, and the aesthetic ideas
of a number of innovative composers is cited. This chapter is not only filled with
musical models, but also filled with some wonderful role models – including
the inspiring compositions of Cipriani and Giri themselves. This chapter is so
important at this point in the “course” because it establishes context and sets
the stage for more expanded compositional work with the techniques that have
been learned and the systems that have been built. This is where Cipriani and
Giri teach the student to “see”.

Finally, Chapter 9 focuses on MIDI and gives us a deeper and more complete
review of the MIDI spec and shows the ways that this knowledge and these
messages can be applied in Max. This chapter sets the stage for the final
Interlude that focuses on the incredibly important Max for Live application of
the work thus far.

And so…

Volume 1 was fantastic. Volume 2 raises the bar and brings insights into the
compositional process, new ideas on working with “time-forms”, and new ways
to integrate signal processing and synthesis algorithms into a powerful perfor-
mance and production tool via Max For Live. I can’t wait for Volume 3! Until
then, I will close by saying that I am deeply honored to be associated with this
great pedagogical milestone and to write the foreword for Volume 2. Moreover,
I am so happy for all the students around the world who will learn so much from
working their way through the text, the examples, the music, the quizzes, the
projects – all under the guidance of these great teachers – Alessandro Cipriani
and Maurizio Giri.

Max is the brilliant and inspired artistic creation of David Zicarelli and Miller
Puckette. This software has revolutionized the field of computer music and
made it possible for “musicians” to write software; for “musicians” to develop
their own custom interactive systems. As such Max has liberated the artist, and
revolutionized the field of computer music, and made possible the most incred-
ible, diverse, and profound musical creations and performances.

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

X Foreword to the Second Volume

For many years now, the international community of Max users, developers,
and teachers has grown. Their numbers are vast, and the work that they have
created and shared has been so inspiring; but to date, there has never been a
full synthesis, signal processing, composition and production curriculum built
on top of Max – not until now. The series of “interactive and enhanced books”
under the title Electronic Music and Sound Design: Theory and Practice with
Max and MSP clearly establishes Alessandro Cipriani and Maurizio Giri as two
of the greatest and most important teachers of computer music in the world.

Dr. Richard Boulanger
Professor of Electronic Production and Design, Berklee College of Music
Author and Editor of The Csound Book & The Audio Programming Book
– MIT Press

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

XIElectronic Music and Sound Design - Translator’s Note

TRANSLATOR’S NOTE
by Richard Dudas

Back in the days when Max had just a few dozen objects and a relatively
restricted range of what it was capable of doing compared with the program
today, it nonetheless still seemed like a limitless environment. Its basic object set
could be employed, arranged and rearranged in countless ways to build whate-
ver one’s imagination desired. It was an ideal tinkerer’s toolkit – much like the
popular crystal radio sets and erector sets of the 50s and 60s, the more modern
construction sets made of interlocking plastic pieces which first appeared in
the 60s and 70s, or the basic microcomputer systems from the 80s. When Max
came along at the dawn of 1990s, its “do it yourself” paradigm was perfectly
suited to the creative and eager musician in the MIDI-based home studio in an
era when much of the available commercial software had highly limited functio-
nality. Max offered musicians and sound artists the ability to create their own
software to “go outside the box” without needing to learn the intricacies of a
textual programming language nor the mundane specifics of interfacing with
the computer’s operating system.

Since that time, the Max environment has continued to grow and evolve from
a program geared toward interacting with MIDI and simple media to one that
encompasses audio and video processing and connections to external software
and hardware. But in getting bigger, the sheer magnitude of features available
within it has caused it to become rather daunting for many musicians, even
though they may actually be keen to discover what it has to offer. Furthermore,
the instruments and audio effects that have become prevalent since digital
audio workstations moved from the studio to the home studio have become
increasingly more complex, so understanding their inner workings has conse-
quently also oftentimes become mystifying. That is where this series of books
by Alessandro Cipriani and Maurizio Giri comes to the rescue.

This series of books provides a straightforward, musically-oriented framework
to help new users get into the program and at the same time effortlessly learn
the theory behind each of the topics they are studying. It also helps interme-
diate and advanced level students and professionals better grasp concepts
they may already be acquainted with. In addition to presenting a progressive
series of compelling musical tools and explaining their theoretical underpin-
ning, it also supplies useful pre-fabricated high-level modules in instances
where none readily exist in Max. Since these modules are provided as patches,
they can be taken apart, analyzed, modified and learned from, or simply used
as-is, depending on the user’s level of familiarity with the program. Most
importantly, the books in this series do not attempt to teach every esoteric
detail and object that is available in the environment – that is a good thing!
– they concentrate on shedding light on those fundamental notions and tools
(and some more advanced ones, too) that are immediately necessary to help
users understand what they are doing and get started using the program
creatively and practically.

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

XII Translator’s Note

I have been a devoted and passionate user of Max nearly since its inception, was
fortunate enough to be a beta-tester of early versions of the program, and later
also worked as one of the developers of the software at Cycling ‘74. Max has
been an important part of my personal creative musical output (and sometimes
also my free time on the weekends!), and has additionally been central to my
work as educator in the field of computer music. Now, while working in the
rôle of translator for this second volume, I have discovered (via both Cipriani and
Giri’s admirable text as well as the Max program itself) that there are still new
ideas to contemplate, new information to absorb, new techniques to amass
and many alternate ways to design and improve commonly used algorithms for
sound processing and synthesis. For me, this is one of the most amazing aspects
of Max, and indeed of music and the arts, in general. From my perspective as an
educator, this book is everything I would hope for, and more – its very strength
is that it offers the reader technical knowledge alongside compelling artistic
and creative motivations for using open-ended software such as Max instead
of encouraging blind reliance on commonplace off-the-shelf tools, however
seductive their sound may initially seem. Thus, I am both happy and proud to
have been able to play a part in bringing this excellent series of books, written
from a decidedly musical perspective, to a wider audience.

Richard Dudas
Assistant Professor of Composition and Computer Music, Hanyang
University School of Music

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

XIIIElectronic Music and Sound Design - Introduction to the Second Volume

INTRODUCTION TO THE SECOND VOLUME

This book is the second in a series of three volumes dedicated to digital syn-
thesis and sound processing. The first volume of the series covers a variety of
topics including additive synthesis, noise generators, filters, subtractive syn-
thesis and control signals. The third volume will cover Gen, reverberation and
spatialization, various techniques for non-linear synthesis (such as AM, FM,
waveshaping and sound distortion techniques), granular synthesis, analysis
and resynthesis.

PREREQUISITES
All three volumes consist of chapters containing theoretical background mate-
rial interleaved with chapters that help guide the user’s practice of that theory
via practical computing techniques. Each pair of chapters (theory and prac-
tice) work together as a unit and therefore should be studied alongside one
another. This second volume has been designed for users with various levels
of knowledge and experience, although they should already fully understand
the concepts and use of Max which have been outlined in the first volume. The
contents of this volume have been designed to be studied either by oneself or
under the guidance of an instructor.

SOUND EXAMPLES AND INTERACTIVE EXAMPLES
The theoretical chapters of this book are meant to be accompanied throughout
by numerous sound examples and interactive examples that can be down-
loaded from the Virtual Sound website. By referring to these examples, the
user can immediately listen to the sound being discussed (in the case of sound
examples), or discover and experiment with sound creation and processing
techniques (with the interactive examples), without having to spend interven-
ing time on the practical task of programming. In this way, the study of theory
is always concretely connected to our experience and perception of both the
sounds themselves, and the many possible ways they can be processed and
modified.

MAX
The practical chapters of this book are based on the software Max 6,
although Max 5 users can still use this text. We have made sure that all the
patches and activities that are presented here can be realized with both ver-
sions. The sole object specific to Max 6 that we have used is scale~. For Max
5 users, we have included an abstraction that reproduces the functionality
of scale~ on our support page. The patches, sound files, library extensions
and other supporting material for this volume’s practical activities can also
be found on that page.

MAX FOR LIVE
The final chapter, or rather “interlude,” of this book deals with Max for Live –
an application that lets users create plug-ins for Ableton Live using Max. This
is decidedly substantial chapter, in which all the knowledge learned over the
course of the first two volumes will be put to use to create devices (the term

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

XIV Introduction to the Second Volume

used for plug-ins in the Live environment). Special emphasis has been given to
the discussion and study of the “Live API” which allows users to create devices
which can be used to control other plug-ins or even the Live application itself.

TEACHING APPROACH AND METHOD OF THIS BOOK
As with the first volume, this second volume should be studied by reading each
theory chapter in alternation with its corresponding practice chapter, in addi-
tion to carrying out the recommended computer-based activities. Nonetheless,
one major difference, compared to the first volume, is in the type of practice
activities which are suggested: the final activities of correcting, analyzing and
completing algorithms, as well as substituting parts of algorithms for one
another, are no longer present in this volume. Here, throughout each practice
chapter, a copious selection of activities is presented to help the reader both
test and deepen the various skills and knowledge that he has acquired thus
far, in addition to suggesting ways of using them creatively. Throughout this
volume the analysis of algorithms and patches is still carried out in detail (as it
was in the first volume) when new techniques are being illustrated. However,
where older, familiar processes and techniques are concerned, analysis is now
left up to the reader. In other words, we have catered the second volume
to a different type of reader. When writing the first volume, we were aware
that our target reader was someone who, although thoroughly interested in
the subject matter, could have been completely devoid of prior experience
within the realm of electronic music. In this volume we can now presume that
the reader is at an “intermediate” level – someone who has already made
sounds with Max and/or with other software, and who knows the basics of
synthesis and sound processing: in short, a reader who has already “digested”
the material presented in the previous volume. Even those who have not yet
read the first volume but possess the aforementioned skills will still be able to
greatly benefit from this book, although we should point out that many of the
concepts, objects and algorithms presented in the first volume will be referred
to throughout the course of this text.

We would also like to point out the presence of a chapter in this volume
titled “The Art of Organizing Sound: Motion Processes” (chapter 8 in both
theory and practice). This chapter was designed to give the reader an oppor-
tunity to develop his own individual versions of the proposed activities in a
more complex and creative way than in the first volume. This means that the
reader will be encouraged to use his perception, analysis and critical think-
ing, in addition to his own experience and ingenuity. The importance of such
a section dedicated to the creative use of one’s knowledge and skills should
neither be overlooked nor underestimated. Even though the software that we
use may continue to evolve and change over time, the skills that we obtain
through active personal practice and creation act as a flexible tool which can
be applied in different technological contexts. It is our firm belief that a pas-
sive and “bookish” approach to learning is sterile and devoid of meaning,
therefore our aim is to enable the reader to associate and interconnect his
knowledge, skills, perception, analytic ability, ability to ask the right questions
and to solve problems, and ability to create original musical forms with sound,

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

XVElectronic Music and Sound Design - Introduction to the Second Volume

in a natural, inventive and personal way. The goal of this section is thus to
impart how to work within one’s own area of competence.

In order to be able to say one is competent in the field of electronic and
computer music it is not enough simply to know how to create an LFO, for
example, but more importantly how to use it and what to do with it in specific
creative contexts. Indeed, simply knowing how to follow a series of steps is
not an indication of competence; the expert also needs to know how to inter-
pret those steps. Essentially, knowing how to provide the proper settings for
a patch, or how to modify an object’s parameters, not simply as an abstract
task, but with the aim of achieving a certain goal for a sound’s motion or
evolution over time (or within in the listening space) is an essential ability for
sound artists, sound designers and composers.

The reverse-engineering exercises in the first volume hinted at the possibility
that the starting point for being able to use any given synthesis and sound
processing system is not so much the theory behind it, as the actual context
for which it will be used. In the case of the reverse-engineering exercises, the
starting point was a pre-existing sound, specifically selected for the exercise at
hand, whose properties and characteristics needed to be recognized in order
to be able to simulate its spectrum, envelope, etc….

In chapter 8 of this second volume, however, the theoretical knowledge and
practical abilities that we have thus far developed will be put to use and fur-
ther strengthened by focusing on the reader’s own original sound processing
skills and ability to construct motion processes. Nonetheless, the basic com-
positional activities that we propose in this chapter should be limited to sound
forms not exceeding one minute in duration, and should be designed outside
the bounds of a wider formal scope and context, such as that of a larger com-
positional project. That having been said, exactly what kind of sound creation
is being proposed, here?

The scope of sound creation practices is both immense and diverse. It ranges
from algorithmic composition to “laptop orchestras”, from live electron-
ics with human-machine interaction to acousmatic compositions. There are
also soundscape compositions, sound installations, audio-visual installations,
sound art, sound design work – the list is seemingly endless.
Not surprisingly, an infinite number of schools of thought have emerged,
each with its own unique formal approach, ranging from narrative to abstract,
or even in other directions such as forms of an ambient nature, etc…. It is
therefore our desire to supply just a few pertinent tools to allow the reader to
sharpen his own personal skills. We will also try to avoid providing rules and
regulations as much as possible, but rather to try to propose a personalized
experience for sonic discovery. Consequently, we have decided to reinter-
pret and adapt some ideas about spectromorphology, as proposed by Denis
Smalley in some of his articles, for creative endeavors. Thus we are introduc-
ing the categories of simple motion, complex motion and compound motion.
For the interaction between theory and practice, we suggest that each student

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

XVI Introduction to the Second Volume

interpret the type of motion being described, based on both the technical
information provided and the specific purpose for which it will be used, in
order to be able to make use of it within his personal sounds.

SUPPORTING MATERIAL
All the material referenced throughout the course of this book can be down-
loaded from the Virtual Sound website’s support page.
In order to begin working with this text, you will first need to download all of
the Sound Examples and Interactive Examples located on the support page.
Bear in mind that you should constantly refer to these examples while reading
through the theory chapters.

In order to work interactively with the practice chapters of this book, you
will first need to install the Max program, which can be obtained at the site:
www.cycling74.com. Once Max has been installed, you will also need to
download and install the Virtual Sound Macros library from the support page
mentioned above. The support page includes detailed instructions concerning
the correct installation procedure for the library. Last but not least, the support
page also includes the necessary patches (Max programs) related to the practice
chapters of this book.

BIBLIOGRAPHY
As in the previous volume, the final pages of this book include a list of the most
absolutely essential reference works, in addition to the bibliographical refer-
ences cited throughout the course of the text itself.

COMMENTS AND CORRECTIONS
Corrections and comments are always welcome. Please contact the authors by
e-mail at: a.cipriani@edisonstudio.it and maurizio@giri.it

ACKNOWLEDGEMENTS
The authors would like to thank Vincenzo Core and Salvatore Mudanò for their
patience and long hours of work, Lorenzo Seno for his advice about digital
audio, and Richard Boulanger, Marco Massimi and David Zicarelli for their gen-
erosity.
We particularly wish to thank Richard Dudas, whose invaluable work on this
book went far beyond simply translating it. His constant feedback provided us
with some very useful insights.

DEDICATIONS
This volume is dedicated to Arianna Giri, Sara Mascherpa and Gian Marco
Sandri.

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

DIGITAL AUDIO AND SAMPLED SOUNDS

5.1	 DIGITAL SOUND
5.2	 QUANTIZATION AND DECIMATION
5.3	 USING SAMPLED SOUNDS: SAMPLERS AND LOOPING TECHNIQUES
5.4 	 SEGMENTATION OF SAMPLED SOUNDS: BLOCKS TECHNIQUE AND

SLICING
5.5 	 PITCH MANIPULATION IN SAMPLED SOUNDS: AUDIO SCRUBBING

5T

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	The Contents of Volume 1 (Theory and Practice)

OBJECTIVES
Knowledge

•	To know the underlying principles of analog-to-digital and digital-to-analog
sound conversion

•	To know the measurable characteristics of audio interfaces and sound conversion

•	To know the fundamentals of data compression
•	To know the causes and effects of foldover and quantization noise

•	To know various techniques for editing and organizing sounds inside a sampler

•	To know several methods of segmentation and pitch manipulation of sampled sounds

Skills

•	To be able to aurally distinguish and clearly describe the key differences between
decimation and sample rate reduction

•	To be able to aurally distinguish and clearly describe the differences between a
given sound and the same sound played in reverse

•	To be able to aurally distinguish the main differences between a sound processed
with the Blocks Technique and one processed via slicing

CONTENTS
•	Audio Interfaces and A-to-D / D-to-A Sound Conversion

•	The Nyquist Theorem and Foldover

•	Quantization Noise and Dithering

•	The Organization of Sounds in a Sampler

•	Segmentation of Sampled Sounds: The Blocks Technique and Slicing

•	Pitch Modulation in Sampled Sounds

•	Audio Data Compression

•	Audio Data Transmission and Jitter

ACTIVITIES
•	Sound Examples - Interactive Examples

TESTING
•	Questions with Short Answers

•	Listening and Analysis

SUPPORTING MATERIALS
Glossary

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © ConTempoNet 2017 - All rights reserved

5.1 DIGITAL SOUND

In section 1.2T we already established that (a) sound is a mechanical phenom-
enon coming from a disturbance through a medium of transmission (generally
the air) that has characteristics that can be perceived by the human ear. An
acoustic sound can be amplified, reproduced and modified; but in order to do
so, it must first be transformed into a signal capable of being measured, record-
ed, reproduced and modified in simple ways. Let’s suppose we have a flautist
friend who is playing; to transform his acoustic sound we can use a microphone.
The microphone will operate as an electro-acoustic transducer, simply meaning
that it acts as a constant gauge of variations in air pressure. At the same time
the microphone will generate an electrical signal corresponding to the original,
in the sense that its outgoing flow of electric tension corresponds to – in other
words is analogous to – that of the input sound wave. For this reason the signal
coming from the microphone is called an analog signal. However, be aware that
the analog signal is never exactly identical to the original, but contains a certain
amount of distortion (however minimal it may be) in addition to the introduc-
tion of noise (see figure 5.1).

Fig. 5.1 An analog signal

In digital signals, however, the signal is represented by a series of numbers
(remember that a digit is a base component of a numerical value). Each of the
numbers in a digital signal represents the value of the instantaneous pressure, that
is to say the value of the sound pressure at a given instant.
In order to generate a digital signal, the amplitude of the sound is measured at
regular intervals (figure 5.2). This process is called sampling and is entirely analog.1

Fig. 5.2 Sampling and conversion

1 The sampling system that is most often used is Pulse Code Modulation (PCM), based on the acquisition
of the analog signal at regular time intervals. This sampling process is achieved by product modulation,
which consists of multiplying the signal by a series of impulses. The result of this multiplication is a
spectrum containing frequencies equal to the sums and differences of the two multiplied signals. In other
words, this produces ring modulation – a technique which we will cover in more detail in the section of
the third volume dedicated to non-linear synthesis.

sound wave analog signal

ADC
analog-to-digital

converter
amplifiersampling

DAC
digital-to-analog

converter

1101000101

digital
signal

3Chapter 5T - Digital Audio and Sampled Sounds

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © ConTempoNet 2017 - All rights reserved

4 Theory - Section 5.1 - Digital Sound

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

Once the individual analog samples are arranged in time so each one assumes
the amplitude value of the signal at that particular instant, they become subse-
quently converted into a flow of (binary) numerical data. This process is called
analog-to-digital conversion. In order to be able to listen to the digitally con-
verted signal again, a process of digital-to-analog conversion is necessary. This is
the process by which the digital signal becomes converted into an analog signal
once again, so it can be sent to an amplifier and subsequently to the speakers.

The audio interfaces in our computers (or the external audio interfaces attached
to them) generally include both an analog-to-digital converter (or ADC) and a
digital-to-analog converter (or DAC).

ANALOG TO DIGITAL CONVERSION
As we just stated, analog to digital conversion entails “translating” a signal
composed of variations in electric tension into a numerical signal by defining its
electric tension in (binary) numerical terms at regular intervals. In reality, how-
ever, transforming a sound from an analog signal to a digital one requires sev-
eral different steps, as we will see at the end of this section where the subject is
covered in more detail. For now it is enough for you to simply understand that
the ADC contains both analog sampling and digital conversion.

Fig. 5.3 A sampled signal

In figure 5.3, the continuous line represents the flow of an analog signal (i.e.,
voltage or electric tension), while the superimposed points represent the value
of the sampled signal after being converted into numerical values. The sampling
and the conversion of the signal’s first amplitude value (the value 0) takes place
at time 0. After a given amount of time (at time 0.001) a second sampling and
a conversion takes place. In the interval between the two sampling times, the
analog signal has evolved in its instantaneous amplitude value, and now has

am
pl

itu
de

time

5Chapter 5T - Digital Audio and Sampled Sounds

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

an amplitude value equal to about 0.5. The next sampling takes place at time
0.002, and the converted amplitude value is a little above 0.8. As you can see,
the process of sampling records only a few out of an infinite number of values
which make up the analog signal over time, so you might therefore think that
the resulting digital signal contains errors, or is otherwise not faithful to the
original signal. However, we will soon discover that as long as the analog signal
contains only frequencies which are less than half the sampling rate, it is possible
to reconstruct the original signal from the digital samples without any ambiguity.

The time interval that passes between one sample and the next is called the
sampling period, and is measured in seconds or in a subdivision thereof (mil-
liseconds or microseconds). In figure 5.4 it is indicated with the label sp.

Fig. 5.4 The sampling period

The inverse of the sampling period is known as the sampling rate (it is also
referred to as the sampling frequency, or sample rate), which was briefly
described in section 1.5 of the first volume of this series. It is commonly abbrevi-
ated sr, as it is throughout this text, and is measured in Hertz (Hz). For example,
if we use a sampling rate of 48000 Hz to sample a sound, it means that in one
second of time its amplitude will be measured 48000 times.

We can therefore define the following relationships:

sr = 1/ sp

sp = 1/sr

In other words, the sampling rate (the number of samples per second) is equal
to the inverse of the sampling period, and vice-versa.

To find out how to calculate a sampling rate sr that will allow a sound to be
correctly sampled, we need to refer to the Nyquist theorem (also called the
sampling theorem), which states that the sampling rate must be greater than
twice the maximum frequency contained in the signal. Therefore, if fmax is the
maximum frequency contained in a given signal, the minumum sampling rate sr
that we would need to use to faithfully reproduce it would be:

sr > 2 · fmax

6 Theory - Section 5.1 - Digital Sound

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

This naturally implies that the maximum representable frequency will be less
than half the sampling rate. The frequency equal to half the sampling rate is
called the Nyquist frequency.

Before carrying out the process of sampling on a sound, any frequencies above
the Nyquist frequency that are contained in the analog signal must first be elimi-
nated, otherwise they would create an undesirable effect known as foldover,
which we will discuss shortly. For this reason, conversion systems incorporate
some important measures, including the application of an analog lowpass filter
before sampling (called an anti-aliasing filter), in order to eliminate frequencies
above the Nyquist.

Bear in mind, however, that it is impossible to create an ideal analog filter
with an infinitely steep slope at its cutoff frequency, and it is even technically
extraordinarily difficult to design one with a very sharp slope. Consequently,
there is always a risk that some frequencies above the Nyquist frequency will
remain in the sound after filtering. To resolve this problem, sampling systems
use a technique of oversampling after the analog filtering step (using a filter
whose slope is not steep). When using oversampling, the sound is sampled
at a higher sampling rate than the one that was initially chosen, in order to
create a new Nyquist frequency far above the cutoff frequency of the analog
filter. Subsequently, a digital lowpass filter, with a steep slope, is applied to the
oversampled signal. This eliminates any frequencies above our original (higher)
Nyquist frequency (the one before the oversampling). The sound can now finally
be resampled at the chosen sampling rate, using a process of downsampling.
By using this method we can be certain that there will be no undesired effects
resulting from foldover when sounds are sampled.

The best results (above and beyond the stated techniques) can be obtained
using sampling rates above 44.1 kHz, in order to move undesired spectral
images to higher frequencies. It is precisely for this reason that higher sampling
rates are generally used. So, which sampling rates are more frequently used for
audio? In the case of compact discs, a sr of 44.1 kHz was adopted (permitting
reproduction of sounds up to 22050 Hz), whereas, the sr of DVD and Blu-ray
Discs can go up to 192 KHz (therefore permitting reproduction of frequencies
up to 96000 Hz, well above the maximum audible frequency).

FOLDOVER IN DIGITALLY GENERATED SOUNDS
What would happen if the sampling system did not include an anti-aliasing
filter, and thus allowed frequencies above the Nyquist to pass through to the
sampling stage? Or what would happen if, instead of sampling a sound, we
digitally generated a signal inside the computer whose frequency was above
the Nyquist frequency? In both of these scenarios, we would obtain an effect
known as foldover. Foldover is the phenomenon by which frequency compo-
nents that exceed half the sr become reflected back under it. For example, a fre-
quency component of 11000 Hz converted using a sampling rate of 20000 Hz,
will produce a foldover component of 9000 Hz, as we will see in detail shortly.

7Chapter 5T - Digital Audio and Sampled Sounds

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

Let’s imagine that we want to generate a sine wave with a frequency of 12000
Hz. If we use a sampling rate of 18000 Hz, we will have a Nyquist frequency
equal to 9000 Hz. The sound that we want to generate will thus exceed the
Nyquist frequency by 3000 Hz. Consequently, that sound will not have its origi-
nal frequency (in this case defined as 12000 Hz), but instead will appear 3000
Hz below the Nyquist frequency with its sign inverted2 (in other words 6000 Hz,
but with a negative sign).
Therefore, in the case where an oscillator’s frequency is set above the Nyquist,
the actual output frequency due to foldover can be calculated with the follow-
ing formula, where sr is the sampling rate, fc is the frequency to convert and
fo is the output frequency:

fo = fc - sr

Let’s now apply that formula to our previous example:

12000 - 18000 = -6000

Note that this formula is only valid in the case where frequency fc is between
half the sampling rate (i.e., the Nyquist frequency) and 1.5 times the sampling
rate sr. In the section dedicated to aliasing we will learn a general formula that
works for all frequencies.

Fig. 5.5 Foldover

Naturally, this phenomenon occurs not only in relation to sinusoidal signals but
for any component of a complex signal. Let’s take a look at figure 5.5, which
shows a signal made up of various harmonic partials whose fundamental fre-
quency is equal to 2000 Hz. The solid lines represent components actually pres-
ent in the signal after conversion, whereas the dashed lines represent the origi-
nal components of the analog signal that are no longer present in the converted

2 The behavior of each partial, when its sign is inverted from positive to negative (or from negative
to positive), will depend on its waveform and phase. For example, when the sign of the frequency
of a sinusoid is inverted, its phase is inverted, but when we invert the sign of the frequency of a
cosine it remains the same. From this perspective, we can see that it not easy to calculate the effect
of foldover upon the output spectrum.

Nyquist frequency
(22050 Hz)

kHz

8 Theory - Section 5.1 - Digital Sound

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

signal. The bold solid lines represent these latter components which have
become “reflected” back under the Nyquist frequency (which in this example is
equal to 22050 Hz). Let’s now take a closer look at the frequency at 24000 Hz
(that is, the 12th harmonic of the 2000 Hz fundamental in this example): since it
is above the Nyquist frequency, it is subject to foldover, and therefore becomes:

frequency to convert - sampling rate = output frequency
24000 - 44100 = -20100

Similarly, the frequency at 28000 Hz (the 14th harmonic of the 2000 Hz fun-
damental) becomes:

28000 - 44100 = 16100

In the interactive examples which follow, we can hear three different sound
events, each based on a sampling rate of 22050 Hz and therefore having a
Nyquist at 11025 Hz. From this we can conclude that any sound above 11025
Hz will be subjected to the effect of foldover.

-	 in the first example we will sweep the frequency of a sinusoidal sound from
20 to 10000 Hz; there is no foldover in this scenario so we will therefore
hear a simple ascending glissando

-	 in the second example the glissando will extend from 20 to 20000
Hz. At the moment the sound passes above 11025 Hz, we will hear
the phenomenon of foldover. Once it goes above the threshold of the
Nyquist frequency, the upward glissando will become a descending
one, since the more the frequency ascends, the more the reflected fre-
quency will descend due to foldover. The sound will continue to sweep
downward until it stops at 2050 Hz. According to the above formula
we can calculate:

	 fc - sr = fo
	 20000 Hz - 22050 = -2050 Hz

-	 In the third example the sound will sweep from 20 to 30000 Hz. In this
case we can audibly discern a double foldover. Let’s take a look at it in
detail:

1) in the initial stage from 20 to 11025 Hz, the output frequency corresponds
to the frequency we have specified.

2) at the moment it exceeds 11025 Hz the first foldover occurs, making
the resulting frequency glissando downward until it arrives at the 0 (in
other words, it does this as the frequency goes upward from 11025 to
22050 Hz).

	 fc - sr = fo
	 22050 Hz - 22050 - 0

9Chapter 5T - Digital Audio and Sampled Sounds

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

3) our generated frequency now continues beyond 22050 until it arrives at
30000 Hz. At the instant when the reflected sound goes below the thresh-
old at 0 (into the negative), the frequency will once again begin to ascend,
thereby creating another foldover taking place when the frequency of the
signal is less than zero. In general, frequencies less than zero reappear
with their sign inverted, in other words mirrored into the positive (-200 Hz
becomes 200 Hz, -300 Hz becomes 300 Hz, etc.).

As a result of this second foldover, the output frequency rises again until 7950
Hz. So, how do we obtain this final frequency? 7950 Hz is equal to 30000 Hz
(the final destination frequency of the signal we are converting) minus 22050
Hz (the sampling rate). Note that because it is caused by a second foldover, the
final frequency has a second inversion of its sign, back into the positive.

To summarize what has happened, when the frequency we specify exceeds the
Nyquist Frequency (in this case 11025 Hz), a first foldover occurs. When the
specified frequency goes beyond the sampling rate (in this case 22050 Hz) a
second foldover takes place (see figure 5.6, below).

 fc - sr = fo
 30000 - 22050 = 7950

Fig. 5.6 Double foldover

fr
eq

ue
nc

y

time in ms

Nyquist frequency

10 Theory - Section 5.1 - Digital Sound

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

SOUND EXAMPLES 5A • Foldover

5A.1 Simple ascending glissando from 20 Hz to 10000 Hz; sr = 22050
5A.2 Ascending glissando from 20 Hz to 20000 Hz with foldover; sr = 22050
5A.3 Ascending glissando from 20 Hz to 30000 Hz with double foldover; sr = 22050

ALIASING: THE CAUSES

Although we have already explained the effects resulting from foldover, if we
want to better understand its causes we will need to explain the Nyquist theorem
in more detail. In order to have a more precise notion of the limitations imposed
by the Nyquist theorem, let’s imagine a hypothetical sampling system without
anti-aliasing filters that uses a given sampling rate, sr, to sample a sinusoidal
waveform whose frequency, f, is less than the Nyquist frequency. With this sys-
tem we obtain is a series of samples that numerically represent the sine wave.
Now, if with the same sampling rate sr we sample a sine wave whose frequency
is (f + sr) – in other words, a sine wave whose frequency is equal to the sum of
the previous sine wave’s frequency and the sampling rate (and therefore greater
than the Nyquist frequency) – we obtain exactly the same series of samples as
we do when sampling the sine wave with frequency f. Furthermore, we would
also obtain the exact same series of values when sampling sine waves with fre-
quencies (f + 2 · sr), (f + 3 · sr), (f + 4 · sr), etc., ad infinitum. We can therefore
generalize that given a sampling rate sr, all of the sine waves at frequencies of
f + an integer multiple of the sampling rate will be converted into the same series
of samples.
To provide a more concrete example, if our sampling rate sr is 5000 Hz, and
we sample a sine wave whose frequency f is 1000 Hz, we will obtain a series of
sampled values. If we then sample a sine wave whose frequency is 6000 Hz –
i.e., a frequency equal to f (1000 Hz) plus sr (5000 Hz) – we will get an identical
series of values.

Fig. 5.7 Two sine waves with frequencies of 1000 Hz and 6000 Hz sampled at a
rate of 5000 Hz.

8

time in ms

11Chapter 5T - Digital Audio and Sampled Sounds

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

Figure 5.7 illustrates how two sine waves with different frequencies – 1000
Hz and 6000 Hz, respectively – sampled at the same sampling rate of 5000
Hz, yield identical sample values (identified by the square-shaped points in the
graph). This same series of values also can be obtained by sampling sinusoids at
11000 Hz (f + 2 · sr), 16000 Hz (f + 3 · sr), etc.

This mathematical equivalence also holds true when using negative integer
multiples of the sampling rate; sampled sine waves with frequencies of (f - sr),
(f - 2 · sr), (f - 3 · sr), (f - 4 · sr), etc., will all produce the same series of samples.
To continue from our previous example, a sine wave with frequency -4000 Hz
– the sum of the frequency 1000 Hz (f) and sampling rate -5000 Hz (-sr) – will
generate the same amplitude values as the sine wave with frequency 1000 Hz.
Note that a sine wave of -4000 Hz is equal to a 4000 Hz sine wave with its sign
inverted (see figure 5.8).

Fig. 5.8 Two sine waves with frequencies of 1000 Hz and -4000 Hz sampled at
a rate of 5000 Hz.

To summarize, we can say that: given a sampling rate sr and any integer k, posi-
tive or negative, we can not distinguish between the sampled values of a sine
wave of frequency f Hz and that of a sine wave with the frequency (f + k · sr) Hz.

Returning to our previous example, here are the frequencies of the sine waves
that we find inside the audio spectrum, and which generate identical sample
values:

frequency (f+k · sr)
1000 Hz = 1000 + (0 · 5000)
6000 Hz = 1000 + (1 · 5000)
11000 Hz = 1000 + (2 · 5000)
16000 Hz = 1000 + (3 · 5000)
-4000 Hz = 1000 + (-1 · 5000)
-9000 Hz = 1000 + (-2 · 5000)
-14000 Hz = 1000 + (-3 · 5000)

time in ms

12 Theory - Section 5.1 - Digital Sound

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

This situation also holds true when converting a sound that is more complex than
a sine wave: the mathematical relation (f + k · sr), in fact, is valid for any and all
spectral components in a sampled sound.
From this relationship we can derive a formula that will allow us to calculate the
output frequency of any arbitrary frequency to be sampled. We will indicate the
frequency that we are sampling with fc, the sampling rate with the usual sr, the
output frequency with fo, and the whole number multiple of sr that is closest to
fc using N, in order to obtain the formula:

fo = fc - N · sr

As we can see, this formula is very similar to the simplified one that we used
earlier in the section dedicated to foldover.

Here are some examples:

1) fc = 6000, sr = 10000, N = 6000/10000 = 0.6 = 1 (closest whole number value)

therefore: 6000 - 1 · 10000 = -4000

2) fc = 13000, sr = 10000, N = 13000/10000 = 1.3 = 1 (closest whole number value)

therefore: 13000 - 1 · 10000 = 3000

3) fc = 21000, sr = 10000, N = 21000/10000 = 2.1 = 2 (closest whole number value)

therefore: 21000 - 2 · 10000 = 1000

4) fc = 2500, sr = 10000, N = 2500/10000 = 0.25 = 0 (closest whole number value)

therefore: 2500 - 0 · 10000 = 2500 (in this case there is no foldover because
fc < sr/2)

Let’s now take a look at what happens in the frequency domain:

In a hypothetical sampling system without antialiasing filters, the components
(due to the foldover effects we have just described) will make more images of
the same spectrum called aliases, replicated periodically around multiples of the
sampling rate. More precisely, we will obtain a periodic spectrum that, in an
ideal sampling system, will repeat along the frequency axis to infinity. In figure
5.9 we see how the various copies are positioned in the frequency domain in
the case of a sine wave of 1000 Hz sampled with sr = 5000. The frequencies
shown in the image are the same as in the preceding table 1000, 6000, 11000,
16000, -4000, -9000 and -14000.

As we have already learned, the negative frequencies reflect into the positive
frequency range, therefore in the image components are shown at 1000 (the
sampled frequency, which we will call f), 4000 (sr-f, which is 5000-1000), 6000

13Chapter 5T - Digital Audio and Sampled Sounds

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

(sr+f), 9000 (sr · 2-f), 11000 (sr · 2+f), 14000 (sr · 3-f), 16000 (sr · 3+f), etc.
In figure 5.9, the spectrum is represented as symmetrical around 0, and the
successive copies are mathematically translated so they also appear symmetrical
around integer multiples of the sampling rate.

Fig. 5.9 Aliasing

Naturally, in real-world sampling systems frequencies above the Nyquist are
eliminated before sampling precisely in order to cancel out the phenomena that
we have been discussing. As we will see later, in the case of decimation, when
undersampling a digital signal, frequencies resulting from aliasing will become
present and therefore audible and should be filtered beforehand with an appro-
priate lowpass digital filter.

So, what happens if instead of sampling a sine wave we sample a sound
composed of several partials? In this case, each and every one of the sound’s
components will be replicated in this same way. Consequently the aliased sonic
image will contain copies of the complex spectrum, as shown in figure 5.10.

Fig. 5.10 Aliasing of a complex sound.

DIGITAL-TO-ANALOG CONVERSION

Let’s now take a look at the reverse process: digital-to-analog conversion. When
converting from a digital signal to an analog one, it becomes a piecewise (or
stepped) signal in which, after each sample and until the next, a sample-and-
hold mechanism (see section 4.7T and footnote 14, chapter 3.4P) is applied in
order to sustain the electric tension value (i.e., voltage) of the analog output
until the subsequent sample (remember that each sample represents a single

0 sr 2sr 3sr

2sr-f 2sr+f 3sr-f 3sr+fsr+fsr-f-f f

0 sr/2 sr 2sr 3sr

14 Theory - Section 5.1 - Digital Sound

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

point and there are no other values in-between samples). Using this method, a
signal composed of discrete samples can be converted into a continuous (albeit
slightly jagged) analog signal. Since this process introduces angular steps not
present in the original (smooth) analog signal, we have inevitably modified
the signal by altering its waveform, creating components not present in the
original. These components, called aliases, form other images of the original
spectrum (basically, harmonics of it) around the oversampling frequency, each
one decreasing in amplitude as frequency increases.

In figure 5.11 we can see how the sample-and-hold mechanism reduces the
components at high frequencies. More precisely, in the upper part of figure (a)
we can see an ideal sampling system made with impulses of an infinitesimal
duration: the resulting spectrum extends to infinity without losing the ampli-
tudes of the components. In the lower part (b) we can see a sampling system
realized by means of sample-and-hold which as we previously stated, is com-
prised of progressively quieter copies of the spectrum.3

Fig. 5.11 Sampling and aliasing

Naturally, if the spectrum in this case is composed of several partials we will
also have copies of the spectrum decreasing in amplitude as the frequency
increases.
(...)

3 The copies of the spectrum in a sample and hold -based sampling system will decrease according
to the function sin(x)/x (see the image in the lower right hand corner of figure 5.11)

impulses

a

sample and hold

sin (x)/x

b

15Chapter 5T - Digital Audio and Sampled Sounds

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

other sections in this chapter:

 Foldover: the Causes
 The Conversion Process in Detail
 Audio Interfaces, Digital and Analog Signals
 Audio Data Compression

5.2 QUANTIZATION AND DECIMATION
 Quantization, Quantization Noise and Dithering
 Decimation, Downsampling and Bit Reduction

5.3 USING SAMPLED SOUNDS:
 SAMPLERS AND LOOPING TECHNIQUES
 The Sampler
 Looping Techniques and other Sampler Functions
 DC Offset Removal

5.4 SEGMENTATION OF SAMPLED SOUNDS:
 BLOCKS TECHNIQUE AND SLICING
 Blocks Technique
 Beyond the Blocks Technique
 Random or Static Cue Position
 Slicing

5.5 PITCH MANIPULATION IN SAMPLED SOUNDS:
 AUDIO SCRUBBING

• SOUND EXAMPLES - INTERACTIVE EXAMPLES

• QUESTIONS WITH SHORT ANSWERS

• LISTENING AND ANALYSIS

• FUNDAMENTAL CONCEPTS - GLOSSARY

DIGITAL AUDIO AND SAMPLED SOUNDS

5.1	 DIGITAL SOUND
5.2	 QUANTIZATION AND DECIMATION
5.3	 USING SAMPLED SOUNDS: THE SAMPLER AND LOOPING
5.4 	 THE SEGMENTATION OF SAMPLED SOUNDS: THE BLOCKS

TECHNIQUE AND SLICING
5.5 	 PITCH MANIPULATION OF SAMPLED SOUNDS: AUDIO SCRUBBING

5P

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	The Contents of Volume 1 (Theory and Practice) + Chapter 5T

LEARNING OBJECTIVES
Skills

•	To know how to manage the global audio settings for MSP
•	To know how to record a sound
•	To know how to use sampled sounds and modify their amplitude, frequency and bit

resolution

•	To know how to control the playback of a sound in reverse
•	To know how to creatively control looping of sampled sounds

•	To know how to import a sampled sound into a buffer and use this to generate
sound

•	To know how to assemble a simple sampler

•	To know how to creatively control the degradation of a sound by means of bit
reduction and decimation

Competence

•	To be able to realize a short etude based on sampled sounds, using looping, reverse
playback, reading from different starting and ending points in the file, envelopes,
glissandi, etc.

CONTENTS
•	Audio Settings in MSP
•	Foldover

•	Bit Reduction and Decimation

•	Quantization Noise and Dithering

•	Sampled Sound Acquisition and Playback Methods

•	The Construction of a Sampler

•	The Blocks Technique
•	Slicing

•	Audio Scrubbing and Designing a Random Scrubber

ACTIVITIES
•	Building and Modifying Algorithms	

SUPPORTING MATERIALS
•	List of Max Objects - List of Attributes and Messages for specific Max objects -

Glossary

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

5.1 DIGITAL SOUND

GLOBAL AUDIO SETTINGS IN MSP

In order to manage the global audio settings and choose the audio interface
that MSP will communicate with, you will need to open the Audio Status win-
dow which is found in the Options Menu (figure 5.1).

Fig. 5.1 The Audio Status window

We will now take a look at the main features of this important window. It is
not necessary to memorize all the information that is described here; you can
always refer back to this section each time you need information about the
Audio Status window.

The window is divided into three boxed sections, each of which contains a
group of related parameters. The first section primarily deals with the audio
interface. Let’s look at some of its main features:
In the upper part of the window, we can see, on the left, a power button
which can be used to start and stop the DSP engine. On the right, we have
a value which indicates the percentage of the computer’s processor that MSP
occupies in order to perform the active patch’s audio algorithm. Obviously, the
same patch will use different percentages on computers with different process-
ing power. When a patch requires a percentage equal to or above 95% the
computer will become difficult to control and will respond extremely slowly to
commands; it is therefore a parameter to keep an eye on.

49Chapter 5P - Digital Audio and Sampled Sounds

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

50 Practice - Section 5.1 - Digital Sound

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

Driver: this chooses the audio driver used by MSP. It can be used either to
select the driver for an audio interface connected to the computer (in the figure
above, the “CoreAudio” driver of a Macintosh computer is selected), or to send
the signal to an application compatible with the ReWire protocol1, by selecting
the “ad_rewire” menu option. The “NonRealTime” option can also be selected
to generate a signal out of real-time, which can be very useful if the compu-
tation algorithm is too complex to be able to be executed in real-time by the
computer. In this case the signal will naturally be saved to disk so you can listen
to it when processing is finished. Finally, by selecting the option “Live,” users of
Max For Live2 can send the audio directly to the program Ableton Live.

Input Device, Output Device: these two parameters allow us to specify the
input and output devices. Their function depends on the type of driver and
audio interface used.

The second boxed section allows us to regulate the relationship between effi-
ciency and latency for the audio processing, as well as to regulate the temporal
precision of Max messages.

Sampling Rate: here we can specify the sampling rate. The list of sampling
rates available will vary depending on the audio interface used.

I/O Vector Size: digital audio signals do not pass between MSP and the audio
interface one sample at a time, but rather in groups of samples called vectors. The
size in samples of the input/output vector can be set here. The smaller the vector
is, the less latency (i.e., delay) there will be between input and output. On the
other hand, processing each vector has a certain computational cost – this means
that, when using a very small vector size, more vectors will need to be computed
per second than with larger vectors, and this will increase the percentage of CPU
needed to compute the signal. What’s more, a vector that is too large can create
problems, in so much as MSP may not be able to calculate the signal in the time
available, and this could create a click in the audio being output. We recommend
using a setting no greater than 256 samples, even though the range of possible
values for this setting will depend on the audio interface (some interfaces, for
example, could have a minimum I/O latency of 512 samples).

Signal Vector Size: this parameter indicates the number of samples that the
MSP patch itself will process at a time. Also in this case, the larger the vector
is, the less the computational cost will be. The difference between this and
the former vector setting is that the signal vector size will have no effect on
latency, and cannot be set to values larger than that the I/O Vector Size. For
certain objects (we will see which ones at the appropriate moment) there can
nonetheless be useful minimum values. We recommend using a value between
16 and 128 samples.

1 For more about the ReWire protocol, see http://www.propellerheads.se.
2 We will talk about Max For Live at the end of this Volume.

51Chapter 5P - Digital Audio and Sampled Sounds

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

Scheduler in Overdrive: this option can also be set using the Options menu.
When Max is in overdrive, it gives priority to timed events (for example, bangs
sent by the metro object) and MIDI messages that it receives, over other
tasks of secondary importance, such as the refreshing the patch’s graphics, or
responding to mouse or computer keyboard input. This means that Max will
be rhythmically more precise, but may run the risk of no longer responding
to keyboard or mouse input if there are too many timed events to deal with.
Nonetheless, MSP signals always have priority over Max messages.

Audio Interrupt: this option is available only when Max is in overdrive mode.
When this option is set to yes, timed events are always processed immediately
before calculating each signal vector. This allows us to more precisely synchro-
nize audio with Max messages3. However, when using this option we should
select a very small Signal Vector size (less than 64 samples) otherwise the Max
messages are likely to be sent at times significantly different from those expect-
ed. This happens because Max must “wait” for MSP to compute its signal vector
before being able to generate its timed message. For example, if the signal vector
were 1024 samples long using a sampling rate of 44100 Hz, the vectors would
be calculated roughly every 23 milliseconds. This means that a sequence of timed
Max events would be reproduced in successive bursts every 23 milliseconds. With
a signal vector of 16 samples, on the other hand, the time interval between two
vectors would be less than a half a millisecond, and therefore would only create
very small delays in the timing of Max events and thus absolutely imperceptible
to the listener.

CPU % Limit: this allows you set limits on the percentage of CPU that MSP is
able to use (a value equal to zero means “no limit”). This can be useful to keep
the program from “taking over” all of the computer’s resources.

Input Channels, Output Channels: these are the number of input and output
channels used by the audio interface.
The four menus provided can be used to set the first two of the audio inter-
face’s input and output channels. In order to set other channels you need to
click on the lower right-hand button marked “I/O Mappings.” The button on
the lower left, labeled “Audio Driver Setup” can be used to access the prefer-
ences for the audio interface you are using.

3 This option is very useful in patches where the Max messages activate the production of sound in
MSP, such as in the patch IB_04_sequence.maxpat which was discussed in Interlude B of the first
volume: we recommend that you also keep it activated for the patches which will be described in
successive sections of this chapter.

52 Practice - Section 5.1 - Digital Sound

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

FOLDOVER

Referring to section 5.1 of the theory chapter, we can see what happens when
we move the frequency of a sine-wave oscillator above the Nyquist frequency.
Rebuild the patch shown in figure 5.2.

Fig. 5.2 Glissando beyond the Nyquist frequency.

The cycle~ oscillator object is connected to the spectroscope~ object which,
as we have already seen, can be used to visualize a signal’s spectrum. Clicking
on the message box connected to the line~ object, triggers a glissando (from
100 to 42000 Hz over 10 seconds) that will go beyond the Nyquist frequency.

The destination frequency indicated in the figure (42000 Hz) assumes that we
are using a sampling rate (sr) of 44100 Hz. If your audio interface is set to a
different sampling rate (you can check this in the Audio Status window) you
should change it to 44100 Hz, or else use a different destination frequency.
The destination frequency should be about 2000 Hz less than the sampling rate
being used – for example, for an sr of 48000 Hz, the destination frequency of
the oscillator should be set to 46000 Hz, whereas for a sr of 96000 Hz, the des-
tination should be around 94000 Hz, and so forth. When running the patch, we
can see (in the spectroscope) how the sinusoid rises until the Nyquist frequency
and then “bounces” back in the opposite direction, stopping at the reflected
frequency 2100 Hz (in reality -2100 Hz), which corresponds to the formula that
we saw in section 5.2 of the theory chapter:

fc - sr = output frequency
42000 Hz - 44100 Hz = -2100 Hz

Now let’s replace the sine wave with a sawtooth oscillator (figure 5.3).
We will use the phasor~ object as an oscillator. Although the phasor~ object
outputs a ramp from 0 to 1, by including a few simple math operations, we can
convert this into a ramp from - 1 to 1 (as we have already done in the first chapter).
You will notice that we have lowered the destination frequency to 21500 Hz.
This is because we do not need to increase the fundamental beyond the Nyquist
since the sawtooth is already rich in harmonics which will pass the Nyquist

53Chapter 5P - Digital Audio and Sampled Sounds

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

frequency (as always, you can modify the destination of the ramp in accordance
with the sampling rate of your audio interface). If we turn on the patch and
trigger the upward glissando, we will hear a shower of harmonics bouncing off
the “wall” at the Nyquist frequency. These reflected harmonics quickly descend
to 0 Hz, and rebound upward once again, only to be reflected back down, back
up, and so forth, creating a constant zigzag throughout the spectrum during
the glissando. After 10 seconds, when the ramp is finished, the spectrum will
settle into an inharmonic arrangement of partials.

Fig. 5.3 Making a glissando with a non-bandlimited waveform

The spectrum of this waveform is extremely rich in harmonics, because it is very
close to an ideal sawtooth waveform (which, as we already know, contains an
infinite number of harmonic components). This means that it is practically impos-
sible for the phasor~ object to output a signal without generating foldover4.

Could the partials that exceed the Nyquist be eliminated by applying a lowpass
filter (for example with a cutoff at 20000 Hz) to our non-bandlimited signal
generator? Unfortunately, no, because the partials reflected due to foldover
inside the reproducible audio band are completely indistinguishable from a
sound generated at that frequency, and the filtering would only happen after
the reflections. For example, if we use a sampling frequency of 48000 Hz, and
we employ the phasor~ object to generate a non-bandlimited signal with a
fundamental of 10000 Hz, we will obtain the following series of harmonics:

Fundamental: 10000 Hz
2nd partial: 20000 Hz
3rd partial: 30000 Hz = 24000 - (30000 - 24000) = 18000 Hz
4th partial: 40000 Hz = 24000 - (40000 - 24000) = 8000 Hz
etc.

Since the third and fourth partials exceed the Nyquist frequency, they are
reflected to 18000 and 8000 Hz, respectively. However, these reflected sounds

4 In reality, when the fundamental frequency is very low, only the very highest harmonics will
exceed the Nyquist. As we have seen in section 2.1T, these harmonics are extremely weak, so the
foldover is negligible.

54 Practice - Section 5.1 - Digital Sound

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

are actually already at 18000 and 8000 Hz at the output of the phasor~
object, so filtering out frequencies above 20000 Hz would have no effect. To
filter the unwanted reflections in this scenario, we would need to use a lowpass
filter with a cutoff below 8000 Hz, but by doing this we would also eliminate
the fundamental and second partial! To fully understand this, try to add the
lowpass filter vs.butterlp~ to the patch shown in figure 5.3, and you will
realize that the signal is filtered only after the foldover has already taken place.
In chapter 2.1P of the first volume, we have already seen how it is possible to
create approximations of ideal waveforms (such as a sawtooth wave) that con-
tain a limited (i.e., not infinite) number of harmonics, using the vs.buf.gen10
object. Using the method shown in that chapter, we can approximate a saw-
tooth waveform using only 20 harmonics, and therefore, supposing a sampling
frequency of 44100 Hz, we can create an oscillator that can safely go up to
about 1102 Hz without incurring foldover (at 1102 Hz, the 20th harmonic will
be at 22040 Hz, just slightly under the Nyquist) – above this frequency limit,
components within the waveform will begin to be reflected downward.

Fortunately, in MSP there is a group of bandlimited oscillators (which we have
already seen in section 2.1 of the practice chapter), which generate “classic”
waveforms (sawtooth, triangle and square waves), and which allow us to gen-
erate the waveform at any frequency under the Nyquist without the effects
of foldover. In reality, these waveforms are not written into a predetermined
wavetable, but are generated by an algorithm that limits the number of harmon-
ics based on the fundamental frequency of the oscillator: if this is 100 Hz, for
example, the waveform will have around 200 harmonics, if it is 1000 Hz it will
have only about 20, etc. (assuming we are using a sampling rate of 44100 Hz
– for other sampling rates the number of harmonics will vary proportionately).
Let’s now replace the phasor~ and math operations in our patch with a saw~
object, which outputs such a bandlimited sawtooth waveform (see figure 5.4).

Fig. 5.4 The spectrum of a bandlimited waveform

If we run the patch and trigger the glissando, we can see in the spectroscope
that the upper harmonics vanish little by little as they approach the Nyquist
frequency. At the end of the ramp, when the fundamental of the oscillator
passes 11025 Hz (one quarter of the sampling rate, or half the Nyquist), there
is only a single component – the fundamental – left in the spectrum, since at
this frequency the second harmonic would create foldover (because it would be
greater than 11025 · 2, and thus above the Nyquist frequency).

55Chapter 5P - Digital Audio and Sampled Sounds

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

5.2 QUANTIZATION AND DECIMATION
BIT REDUCTION, QUANTIZATION NOISE AND DITHERING
Within MSP, samples are represented as floating-point numbers that have a
length of 64 bits (as of Max version 6). Apart from the bit used for the num-
ber’s sign, there are 11 bits used for the mantissa and 52 bits for the fractional
part of the number. There are therefore 253 levels of quantization (for more on
floating-point number theory, scaling factor, etc., see Chapter 5.2T).

Let’s look at a practical example of how we can reduce the number of quan-
tization levels of an MSP audio signal. In addition to serving as a pedagogical
example, this technique can additionally be used to produce a somewhat cli-
chéd Lo-Fi (low fidelity) sound which has already acquired a musical aesthetic of
its own. Recreate the patch shown in figure 5.5.

Fig. 5.5 Generating an 8-bit sound

The degrade~ object can be used to (virtually) reduce both the number of bits
used for the samples in a digital signal, as well as its sampling rate. This object has
two arguments that can also be changed by using the object’s second and third
inlets. The first argument indicates the reduction factor of the sampling rate5 and
the second the bit depth of the signal. The example in the above figure therefore
shows degradation to an 8-bit signal, which has only 256 levels of quantization.
When the amplitude of the signal (a sine wave oscillator) is at maximum we are
using all quantization levels available to us, but even so, quantization noise is still
clearly audible. By lowering the value of the number box which controls the sine
wave’s amplitude to around 0.15 we can hear a much more pronounced effect
because the signal uses even fewer degrees of quantization.

5 A value of 1 indicates a sampling rate which is unchanged compared to that used by the sound
card: further details below.

56 Practice - Section 5.2 - Quantization and Decimation

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

Now let’s take a look at a patch that will let us apply any desired number of bits
and calculate the relative levels of quantization: open the file 05_01_quantize.
maxpat (figure 5.6).

Fig. 5.6 File 05_01_quantize.maxpat

The right hand part of the patch contains the algorithm that allows us to calcu-
late the number of levels of quantization based on a given number of bits. Since
quantization levels are a power of two raised to the number of bits (and therefore
always powers of two), we have used the pow object to correctly calculate this
value. The pow object receives a list of 2 values from a message box: the first
(the base) is set to 2 and the second (the exponent) is the replaceable argument
$1 that can be changed to any value between 1 and 24, thereby allowing us to
calculate the number of quantization levels anywhere between 1 and 24 bits.

In this example patch we are also using the degrade~ object to quantize the
input sound to a desired number of bits by sending a bit depth reduction value
to the third inlet.
Upon opening the patch, the loadbang object triggers two message boxes that
tell the sfplay~ object to open the sound file vs_flute_bouree.wav6 and to
activate loop mode for playback. In order to actually trigger the sfplay~ object
to play the sound file, we need to click on the toggle connected to it (after
having clicked on the “startwindow” message, naturally), and at this point it
is possible to hear the result of reducing the number of bits and consequently
altering the sound’s quantization. You can try to load other sounds and hear

6 This file (and indeed all the other audio files that we will use) is found inside the sound library
Virtual Sound Macros, in the folder “soundfiles” Note that in Max it is not strictly necessary to add
the file extension to the name of a sound file (in this case .wav). However, if there are multiple
sound files in the same folder with the same name but a different extension, Max will load the file
whose extension comes first, alphabetically. For example, if there are two files vs_flute_bouree.wav
and vs_flute_bouree.aif, Max would load the file with the extension .aif.

57Chapter 5P - Digital Audio and Sampled Sounds

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

how they become degraded by lowering the samples’ bit length. Remember that
every time you load/open a new sound file you will need to initiate playback once
again by reactivating the toggle connected to sfplay~.
In order to improve the sound quality of our purposely-degraded audio and
eliminate as much distortion as possible, we can simulate dithering: open the
file 05_02_dither.maxpat (fig 5.7).

Fig. 5.7 The file 05_02_dither.maxpat

In the right-hand part of the patch there is a noise~ object which produces
white noise that is scaled down to match the quantization span for the desired
bit depth. Using the operator !/ with an argument of “1.” will generate a num-
ber representing the amplitude of a single level of quantization: for example if
the level of quantization is at 4 bits, as it is in the figure, the amplitude of a
single level is equal to 1/16 or 0.0625. This amplitude serves as our multiplica-
tion factor for the white noise.

The scaled noise is added to the signal (see the left-hand side of the patch),
and the resulting summed signal is sent to the input of the degrade~ object.
The dithering can be turned on and off using the toggle in the lower-right
side of the patch. This toggle is connected to a gate~ object which lets an
input signal in the right inlet pass through to the output if the value sent to
the left inlet is 1, or will block the signal if the value sent to the left inlet is 0.
When the number of bits is low (under 12) the noise added by the dithering is
very apparent, but nevertheless contributes to eliminate harmonics produced
because of distortion. Try to use the percussion sound vs_drums_loop.aif with
a very low number of bits (for example 4): although the result is very noisy,
dithering does allow the drum sound to be acceptably reconstructed (especially
considering we are only using 4-bit numbers as samples!); when turning off
dithering the sound becomes extremely distorted.

58 Practice - Section 5.2 - Quantization and Decimation

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

To reduce the dithering noise we can use filters: open the file 05_03_dither_filter.
maxpat (figure 5.8).

Fig. 5.8 The file 05_03_dither_filter.maxpat

Here, we have added a lowpass filter with a steep slope (the subpatch
[p lowpass] actually contains an 8th order Butterworth lowpass filter). It is
possible to turn the lowpass filtering on and off via the selector~ object
which we have already seen in chapter 1.2P. Try to adjust the cutoff fre-
quency of the filter so it eliminates as much of the dithering noise as pos-
sible, without excessively darkening the resulting sound.

(...)

59Chapter 5P - Digital Audio and Sampled Sounds

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

other sections in this chapter:

	 Decimation
	 Sample and hold

5.3 	 USING SAMPLED SOUNDS:
	 SAMPLERS AND LOOPING TECHNIQUES
	 Sound Acquisition
	 Reading Sound Files from Disk
	 Sound Files Loaded into Memory
	 Building a Sampler
	 DC Offset Removal

5.4 	 SEGMENTATION OF SAMPLED SOUNDS:
	 BLOCKS TECHNIQUE AND SLICING
	 Blocks Technique
	 Beyond the Blocks Technique
	 Slicing

5.5 	 PITCH MANIPULATION IN SAMPLED SOUNDS:
	 AUDIO SCRUBBING
	 Random scrubber

• List of Max Objects

• List of Attributes, and Messages for specific Max objects

• Glossary

MANAGING TIME, POLYPHONY,
ATTRIBUTES AND ARGUMENTS

IC.1	 THE PASSAGE OF TIME (IN MAX)
IC.2	 MAKING A STEP SEQUENCER
IC.3	 POLYPHONY
IC.4	 POLYPHONY AND MULTICHANNEL SYSTEM
IC.5 	 ABSTRACTIONS AND ARGUMENTS

Interlude C

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	The contents of Volume 1 and Chapter 5 (theory and practice) in this volume.

SKILLS
•	To know how to control various types of musical time values: duration, tempo,

timing, as well as the global time management system in the Max environment

•	To know how to build and control a step sequencer

•	To know how to manage polyphony in Max

•	To know how to control attributes and arguments in abstractions

CONTENTS
•	Duration, metrical tempos and timing values in Max

•	The global time management system in Max

•	Arguments and attributes

•	Algorithms for a step sequencer

•	Polyphonic patches

•	Abstractions and arguments

TESTING
• Activites at the computer

SUPPORTING MATERIALS
•	List of Max objects - List of attributes, messages and graphical elements for

specific Max Objects - Glossary

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

IC.1 THE PASSAGE OF TIME (IN MAX)

For this chapter we suggest you activate both the “Scheduler in Overdrive” and
“in Audio Interrupt” options in the Audio Status window, and set the Signal
Vector Size between 16 and 64 samples (preferably 16).

The units we have been using to measure time until now have either been mil-
liseconds (for instance when indicating the interval between successive bang
messages output by the metro object) or samples (for example when indicating
the delay time of an audio signal input into the delay~ object)1. It is also pos-
sible to use other time measurement units within Max, and above all possible to
synchronize several objects together using a master clock (a system of global
time management in the Max environment) controlled by the transport
object, which lets the user, among other things, activate and deactivate the
global passage of time.

Rebuild the patch shown in figure IC.1.

Fig. IC.1 The transport object

Notice that the argument for the metro object is not a value in milliseconds,
but a symbol: 4n (we will see what this means shortly). This causes the metro
object’s timing to be linked to the master clock.
First, turn on the toggle above the metro object. Contrary to what you
were probably expecting, the metro does not output anything. Now, turn
on the toggle above the transport object and the metro will start to
produce bangs. The transport object has activated the master clock,
which, in turn, has activated the metro object. In this scenario, the metro
object will only “run” when the master clock is active. But, what is our met-
ronome’s tempo? The symbol 4n that we provided as an argument to metro
is a tempo-relative time value, and more precisely a note value which indicates
that our tempo corresponds to one quarter note (crochet). The metro object
will therefore output a bang every quarter note beat.

However, what is the duration of a quarter note? Its duration depends on the
transport object, or more specifically on the object’s “tempo” attribute. This
attribute is used to express the number of beats per minute2 (abbreviated bpm)
and by default its value is set to 120 bpm (120 beats per minute, or one beat
every half second).

1 This object has already been discussed in section 3.5P of the first volume.
2 This is therefore the same tempo that is used for metronome markings.

137Interlude C - Managing Time, Polyphony, Attributes and Arguments

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

138 Practice - Section IC.1 - The Passage of Time (in Max)

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

The metronome’s tempo can be changed by sending the transport object
the “tempo” message followed by a value in bpm. Modify the preceding patch
so it resembles the one shown in figure IC.2

Fig. IC.2 Modifying the metronome tempo

In addition to adding the message to modify the global tempo in bpm, we have
also added a timer object that lets us calculate the interval between successive
bangs (in milliseconds). As you can see, by changing the tempo to 60 bpm, the
metro will output one bang every second (1000 milliseconds). Try changing
the tempo in bpm and see how the millisecond tempo calculated by the timer
object changes (note that in the patch, the button above the timer is connected
to both of its inlets).

The timer object is a “stopwatch” that starts when a bang is sent to its left
inlet, and outputs the time that has elapsed since it started whenever it receives
a bang in its right inlet. You should therefore take note that, unlike the majority
of Max objects, the timer object’s “hot” inlet is its right inlet.

ACTIVITY

Create a new patch to try out the timer object, sending bangs separately to
its left and right inlets, paying careful attention to the values output by timer.
Afterward, explain why connecting one button to both of timer’s inlets, as
shown in figure IC.2, allows us to calculate the time between successive bangs
from a single button object.

As you may have guessed, there are several different symbols which are used to
indicate the main note values. These are furthermore subdivided into minimal
units called ticks. A quarter note (crochet), as we have already seen, is represented
with the symbol 4n, and can be subdivided into 480 ticks. This means that an
eighth note (whose symbol is 8n) corresponds to 240 ticks, and a sixteenth note
(16n) to 120 ticks, and so on. Obviously the duration of the ticks depends on the
metronome tempo of the transport object.



139Interlude C - Managing Time, Polyphony, Attributes and Arguments

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

Here is a table of symbols and their corresponding fractional note name values,
traditional note names, and values in ticks:

1nd dotted whole note (dotted semibreve) - 2880 ticks
1n whole note (semibreve) - 1920 ticks
1nt whole note triplet (semibreve triplet) - 1280 ticks
2nd dotted half note (dotted minim) - 1440 ticks
2n half note (minim) - 960 ticks
2nt half note triplet (minim triplet) - 640 ticks
4nd dotted quarter note (dotted crochet) - 720 ticks
4n quarter note (crochet) - 480 ticks
4nt quarter note triplet (crochet triplet) - 320 ticks
8nd dotted eighth note (dotted quaver) - 360 ticks
8n eighth note (quaver) - 240 ticks
8nt eighth note triplet (quaver triplet) - 160 ticks
16nd dotted sixteenth note (dotted semiquaver) - 180 ticks
16n sixteenth note (semiquaver) - 120 ticks
16nt sixteenth note triplet (semiquaver triplet) - 80 ticks
32nd dotted thirty-second note (dotted demisemiquaver) - 90 ticks
32n thirty-second note (demisemiquaver) - 60 ticks
32nt thirty-second note triplet (demisemiquaver triplet) - 40 ticks
64nd dotted sixty-fourth note (dotted hemidemisemiquaver) - 45 ticks
64n sixty-fourth note (hemidemisemiquaver) - 30 ticks
128n hundred twenty-eighth note (semihemidemisemiquaver) - 15 ticks

In the patch in figure IC.2, change the argument to the metro object from 4n
to other note values, each time checking the tempo of the resulting beats with
the timer object. Now modify the patch as shown in figure IC.3.

Fig. IC.3 Two against three

We have added a second metro object whose beat rate (tempo) is equal to a
quarter note triplet (4nt). The two different tempos are used to generate two
random MIDI note streams. In the time that it takes for two notes to be gener-
ated in the bass voice, three notes are generated in the treble register. Note that
the second argument of the makenote object, corresponding to the note’s
duration, is 8n, which indicates an eighth note (quaver) duration – as you can

140 Practice - Section IC.1 - The Passage of Time (in Max)

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

see, the makenote object (which we spoke about in section IB.1), can also use
tempo-relative time values.

In this patch, a single toggle is being used to start the transport and two
metro objects simultaneously – this ensures that the two note streams will start
exactly at the same time. If you now change the transport object’s tempo in
bpm you will notice that the two note streams always remain synchronized, in
the same 2-against-3 rhythm.
Warning: the tempo in bpm, as well as all the other commands sent to the
transport are global! This means that they apply to the entire Max environ-
ment. If you have two patches open and they both use relative time values, start-
ing and stopping the master clock or modifying the tempo in bpm in one of the
two patches will also activate and deactivate the master clock and change the
tempo of the other. It is also possible to entirely eliminate the transport object
from both of the patches and instead use an independent window (known as
the Global Transport) which contains commands for the master clock (this win-
dow can be opened at any time by choosing the Global Transport option from
the Extras menu). By using this window we can start and stop the master clock,
change its tempo in bpm, and see the total elapsed time, among other things.
Note that Global Transport can also be activated using the last icon of the lower
Toolbar, which represents a triangular start button inside a circle divided into
four sectors (see figure IC.3b).

Fig. IC.3b Global Transport icon

Let’s return to figure IC.3. Try changing the argument of the first metro to 8n.
Now, for every four notes in the bass we will hear 3 in the upper register, because
four eighth notes (quavers) are equal in duration to a quarter note triplet.

ACTIVITY

The metrical rapport of beats between the two random note streams shown in
figure IC.3 can be denoted as the ratio 2/3 (i.e., two against three). Try modify-
ing the arguments of the two metro objects in order to obtain note streams
with the following rhythmic ratios: 3/4, 3/8, 2/6, 4/9 (the latter may not be
immediately obvious: you will need to use dotted note values for the numerator).



141Interlude C - Managing Time, Polyphony, Attributes and Arguments

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

With the available note value symbols you can create only a certain number of met-
ric relationships; they cannot be used to create a 4/5 beat ratio (four against five),
just to give one example. In order to obtain these kinds of metric relationships it is
necessary to use ticks.

In the case of a 4/5 beat ratio, since our quarter note is equal to 480 ticks, a quarter
note quintuplet will equal 480 · 4 / 5 = 384 ticks. This value does not have a cor-
responding symbol in the list of note values that Max accepts. Unfortunately it is not
possible to provide a value in ticks directly as an argument to metro, but this can
still be done using setting the “interval” attribute, either with the object’s inspec-
tor or by using a message followed by a value and a measurement unit. Modify the
patch as shown in figure IC.4.

Fig. IC.4 Four against five

Here, the message “interval 384 ticks” is sent to the second metro using a
message box. As we have already seen above, this corresponds to a quarter
note quintuplet.

ACTIVITIES

• Create the following beat ratios, using the “interval” attribute for both metro
objects: 3/10, 5/9, 15/8.

• Make Max do the math: modify the preceding patch so that all the user has to
do is set the rhythmic ratio in two number boxes (for example the values 4 and
3 to represent 4/3), and let the patch calculate the exact value for the number
of ticks. (Hint: you should only need to add one object for each metro.)

(...)



142 Practice - Section IC.1 - The Passage of Time (in Max)

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

other sections in this chapter:

	 Arguments and Attributes
	 Time Values

IC.2 	 MAKING A STEP SEQUENCER

IC.3 	 THE POLYPHONY

IC.4	 POLYPHONY AND MULTICHANNEL SYSTEM
	
IC.5 	 ABSTRACTION AND ARGUMENTS

• List of Max Objects
• List of Attributes, Messages and Graphical Elements for specific Max Objects
• Glossary

DELAY LINES: ECHOES, LOOPING,
FLANGER, CHORUS, COMB AND ALLPASS
FILTERS, PHASER, PITCH SHIFTING,
REVERSE, KARPLUS-STRONG ALGORITHM

6.1	 DELAY TIME: FROM FILTERS TO ECHOES
6.2 	 ECHOES
6.3 	 LOOPING USING DELAY LINES
6.4 	 FLANGER
6.5 	 CHORUS
6.6 	 COMB FILTERS
6.7 	 ALLPASS FILTERS
6.8 	 THE PHASER
6.9	 PITCH SHIFTING, REVERSE AND VARIABLE DELAY
6.10	THE KARPLUS-STRONG ALGORITHM

6T

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	The contents of volume 1, chapter 5 (theory and practice) and Interlude C

OBJECTIVES
Knowledge

•	To know how to use delay lines for various purposes

• To know how to simulate single and multiple echoes

• To know how to use loops, slapback, multitap delays and ping-pong delays

• To know the parameters and use of flangers, chorus and phasers

• To know the basic theory and some possible applications of comb and allpass filters

• To know how to use pitch shifting and reverse

• To know the basic theory behind the Karplus-Strong algorithm
• To know several applications for the simulation of plucked strings and percussion

using the Karplus-Strong algorithm

Skills

• To be able to aurally distinguish and describe the different types of echoes

• To be able to aurally distinguish and describe the main differences between chorus,
phaser and flanger

• To be able to aurally distinguish and describe the modification of the main param-
eters of the Karplus-Strong algorithm

CONTENTS
•	Delay Lines

•	Different types of Echoes

•	Using delay lines for looping, chorus, flanger, phaser, pitch shifting and reverse

•	Comb and Allpass Filters

•	Synthesis using the Karplus-Strong algorithm

ACTIVITIES
•	Sound examples and interactive examples

TESTING
•	Questions with short answers

•	Listening and analysis

SUPPORTING MATERIALS
Fundamental Concepts - Glossary - Discography

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

6.1 DELAY TIME: FROM FILTERS TO ECHOES

Delaying a signal is one of the most powerful and versatile tools we have at
our disposal in the realm of computer music. A wide variety of synthesis and
sound processing techniques, from subtractive synthesis to physical models,
from reverb algorithms to the bulk of classic effects (which will be covered in
this chapter) all have the use of longer or shorter delay lines in common as the
basis of their design.

In section 3.6 we already learned that delay lines are a necessary component
of digital filters. In this case the delay time between the input and output of
the filter is extremely short, and calculated in single samples (for reference, the
amount of time that separates one sample and the next, at a sampling rate
of 48000 Hz is equal to 1/48000th of a second, or about 0.00002 seconds).
Many different types of effects can be created using delays that range from
this “microscopic” delay time up until a slightly larger span of just a few mil-
liseconds.

In this chapter, in particular, we will take a look at the flanger (which has a
constantly varying delay time between 1 and 20 ms.), chorus (typically using
a variable delay time of 20-30 ms.), slapback delay – an effect giving a nearly
simultaneous doubling of a sound (using a delay somewhere in the range of 10
to 120 ms), and different kinds of echo effects (whose delay can range between
100 ms. and several seconds). Furthermore, we will also take a look at the comb
filter – a handy tool that can be used for different purposes, including the cre-
ation of multiple resonances that have a harmonic relationship.

Finally, we will also look at two different implementations of the allpass filter:
the first can be used alongside a comb filter to create reverberation effects
(which we will cover in more detail later on, in the third volume), and the sec-
ond can be used to make a phaser. Figure 6.1 shows an illustrative and helpful
graph with time values ranges that should give you an approximate idea of the
delay times necessary to obtain different effects. The ranges mainly serve as
rough guidelines that can be modified as necessary in order to appropriately
adapt them to different kinds of input sounds.

Fig. 6.1 Different delay times from filters to echoes

0.01 0.1 1 10 100 1000

milliseconds

1ms 20ms

10ms 120ms

100ms

1 or more samples

20 ms 30ms
echo

Filters

Flangers

Slapback delay

Chorus

Echo

207Chapter 6T - Delay lines

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

208 Theory - Section 6.2 - Echoes

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

6.2 ECHOES

The echo effect – i.e., the repetition of a sound – can clearly be perceived if the
repetition of the sound takes place in a time frame greater than what is known
as the Haas zone (25-35 ms.). If, on the other hand, the repetition arrives to the
listener in a shorter amount of time, the listener will have difficulty perceiving
the second sound as a separate one. Moreover, in the case of sounds whose
attack is slow, the sound will tend to be perceived not as a separate sound at
all, but rather a sound fused together with the first.

To simulate a simple echo effect we need to create an algorithm with a delay,
which takes an input audio signal and repeats it at its output after a given
amount of time that can vary anywhere between a few milliseconds and sev-
eral seconds. The delayed sound (defined as the “wet” sound) can optionally
be added to the original sound (the “dry” sound). If we only want to hear the
sound of the effect itself (the wet sound), we just need to give the dry sound
an amplitude of zero. The control of the proportion of the dry and the wet
sound is known, appropriately enough, as balance, and is often defined as a
percentage where 100% indicates only the wet sound, 0% indicates only the
dry sound, and 50% indicates equal amounts of wet and dry. Figure 6.2 shows
a simple delay example.

Fig. 6.2 A simple delay example

INTERACTIVE EXAMPLE 6A.1 • Echo effects with delay times inside and
outside the Haas zone.

If there is more than one repetition of the input sound we effectively obtain a
multiple echo. In order to create multiple echoes, we need to add feedback to
our algorithm.

8

209Chapter 6T - Delay lines

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

Feedback amounts to being able to add the output of a delay back into its
input; an example of delay with feedback is shown in figure 6.3.

Fig. 6.3 Block diagram for delay with feedback

INTERACTIVE EXAMPLE 6A.2 • Multiple Echoes

In this manner, the delay effect can be repeated many times, by adjusting the
feedback gain. If the gain is zero, there will be no feedback, and therefore the
repeated sound will happen just once. By slowly increasing the gain we can get
more and more repetitions of the sound.

Technically speaking, the feedback gain is just a multiplication factor for the
signal (i.e., a scalar), whose value will typically vary between 0 and 1. With a
gain of 50%, for example the feedback signal will be multiplied by 0.5 (in other
words its amplitude will be reduced by half with each repetition of the sound).
To give an example, if the multiplier is set to 0.5, and the initial amplitude is
1, the various attenuated repetitions will have amplitudes of 0.5, 0.25, 0.125,
and so on.

When using a gain of 0% the signal will be multiplied by zero (and therefore
silenced), whereas with a gain of 100% it is multiplied by 1 (and is therefore
not modified). The percentage of gain actually represents the ratio between the
amplitude of the output signal and that of the signal which is sent back to the
input. Therefore, if the multiplier value is 0.99 (equal to 99% gain) the output
sound will only be reduced by 1% each time the signal is sent back to the input.
A multiplier of 1 (equal to 100% gain) is not advisable as it will result in a vir-
tually infinite repetition of the same amplitude, and if other audio signals are
meanwhile also sent to the input, distortion is likely to happen once the signal
from the feedback loop has been added to it. Obviously, multipliers greater than
1 are also not recommended, for the same reason.

+input

delay

amplitude

output

+

feedback gain

8

210 Theory - Section 6.2 - Echoes

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

ACCUMULATION OF DC OFFSET

It is possible that a sound’s waveform (figure 6.4) might contain a positive or
negative DC offset (refer to section 5.3).

Fig. 6.4 A sampled sound with a significant DC offset.

This imbalance might not be problematic when directly playing back the sound.
However, you should be aware that when creating a delay with feedback,
the DC offset of the various repetitions will accumulate and can easily take
the sound out of the amplitude range of the audio interface. To rectify this
potential problem, you simply need to add a highpass filter with a very low
cutoff frequency (for example 10 Hz) – since DC offset is simply a signal with a
frequency of 0 (as already explained in section 5.3), it can be easily filtered out
using such a filter.

SIMULATION OF TAPE DELAY AND ANALOG DELAYS
The term tape delay refers to old echo systems in which a sound was recorded
to tape using one record head, and played back using another playback head,
allowing the possibility of feedback. The delay time was dependent on the
distance between the two heads and the speed of the tape. This type of echo
could have a very long delay time (using two tape recorders placed far from one
another), or have multiple echoes via the use of multiple playback heads. Some
systems used magnetic discs similar to hard disks instead of tape. The repeated
sound in these systems was slightly filtered each time it passed from the play-
back head to the record head, due to a loss of amplitude in the high frequency
range that is typical of analog recording technology. Therefore, in addition to
the delay itself, a digital simulation of tape delay requires using filters that will
modify the spectral content of the sound each time it passes through the feed-
back loop. Alongside a lowpass filter, you can also add a highpass filter inside
the feedback loop in order to eliminate the accumulation of low frequencies.

am
pl

itu
de

time in ms

211Chapter 6T - Delay lines

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

Such a system can also be used to simulate another type of analog delay from a
later era than tape delay, in which delay lines were no longer recorded to mag-
netic media but to solid state components (the delay technology used inside
analog guitar pedals).

INTERACTIVE EXAMPLE 6A.3 • Tape Delay - Analog Delay

(...)

other sections in this chapter:

 Slapback delay
 Multitap delay
 Multiband-multitap delay
 Ping-pong delay
 Implementations

6.3 LOOPING USING DELAY LINES

6.4 FLANGER
 The Parameters of the Flanger
 Depth
 Delay
 Width
 LFO Waveform
 Feedback (multiplier)
 Speed (or rate)
 Link

6.5 CHORUS
 The Parameters of the Chorus
 Delay
 Width (or sweep depth)
 LFO Waveform
 Speed (or rate)
 Number of Voices

6.6 COMB FILTERS
 Parameters of the Comb Filter
 Delay time
 Feedback (multiplication factor)
 Implementation

8

212 Theory - Section 6.2 - Echoes

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

6.7 	 ALLPASS FILTERS
	 Schroeder Allpass Model
	 Second-Order Allpass Filters

6.8 	 THE PHASER
	 The Parameters of the Phaser
	 Depth
	 Range
		 Feedback
	 Speed/rate
	 Q Factor
	
6.9 	 PITCH SHIFT, REVERSE AND VARIABLE DELAY
	 Variable Delay Without Transposition

6.10 	 THE KARPLUS-STRONG ALGORITHM

• Sound Examples - Interactive Examples

• Questions with Short Answers

• Listening and Analysis

• Fundamental Concepts - Glossary - Discography

DELAY LINES: ECHOES, LOOPING,
FLANGER, CHORUS, COMB AND ALLPASS
FILTERS, PHASER, PITCH SHIFTING,
REVERSE, KARPLUS-STRONG ALGORITHM

6.1	 DELAY TIME: FROM FILTERS TO ECHOES
6.2 	 ECHOES
6.3 	 LOOPING USING DELAY LINES
6.4 	 THE FLANGER
6.5 	 CHORUS
6.6 	 COMB FILTERS
6.7 	 ALLPASS FILTERS
6.8 	 THE PHASER
6.9	 PITCH SHIFTING, REVERSE AND VARIABLE DELAY
6.10	THE KARPLUS-STRONG ALGORITHM
6.11	DELAY LINES FOR MAX MESSAGES

6P

LEARNING AGENDA
PREREQUISITES FOR THIS CHAPTER
•	The contents of volume 1, as well as chapter 5 (theory and practice), Interlude C

and 6T

OBJECTIVES
Abilities

•	To be able to distinguish and control different types of delay lines
•	To know how to build delay line effects such as echo, echo with feedback, tape

delay simulation, slapback delay, ping-pong delay, multitap delay, multiband-
multitap delay

•	To know how to build and control loops using delay lines

• To know how to build flanger and chorus algorithms

• To know how to program and use different types of comb and allpass filter algo-
rithms, and to construct harmonic resonators and phaser effects.

• To know how to build delays that control pitch shifting, reverse and variable
delay effects including glissandi and changes of delay time without transposition

• To know how to program the Karplus-Strong Algorithm to simulate the sound of
plucked strings and other sounds

• To know how to use delay lines for Max messages

Skills

•	To be able to create a brief composition based on the use of sampled sounds, using
loops, reverse, different types of delay lines with various modifications.

ACTIVITIES
•	Building and Modifying Algorithms

TESTING
•	Activities at the computer

SUPPORTING MATERIALS
•	List of Max objects - List of attributes, messages and arguments for specific Max

objects

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

6.1 DELAY TIME: FROM FILTERS TO ECHOES

To create a delay line with Max we can use the delay~ object, which delays a
signal a certain number of samples, as we have already seen in section 3.6P of
the first volume. Rebuild the patch shown in figure 6.1.

Fig. 6.1 The delay~ object

The signal output by the click~ object is delayed by 44100 samples on the
right channel1; if the sampling rate of your audio interface is 44100 Hz, the
delay would be equal to one second.
It is easy to understand that specifying the delay time like this – in samples – is
rather inconvenient if we need to express a delay in seconds, since the number
of samples representing one second could change depending on the sampling
rate being used, and thus we could never be sure that the delay time would be
the same in every situation. Generally, the delay~ object is used in cases where
we need to delay a signal by a specific number of samples (as we did for the fil-
ters in section 3.6P). Nonetheless, it is always possible to express the delay time
in other formats by using the appropriate syntax for the different time units that
we learned in section IC.1. Modify the previous patch as shown in figure 6.2.

Fig. 6.2 Specifying the delay time with different time formats

1 Remember that the two arguments to the object represent the amount of memory reserved for
the delay (in other words the maximum possible obtainable delay) and the delay actually created by
the object, respectively. Both values are expressed in samples by default.

257Chapter 6P - Delay lines

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

258 Practice - Section 6.1 - Delay Time: from Filters to Echoes

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

The figure shows how to specify the delay time for the delay~ object in three
different formats: milliseconds, ticks and note value. The desired value should
be sent to the second inlet of the object, thereby replacing the argument
44100. Please refer to section IC.1 (subsection “Time Values”) for the complete
list of available formats2.

Later in this chapter, we will often be using delay times that vary over time. In this
case, in order to avoid discontinuities, the delay time will be sent as a signal, not
as a Max message. It is possible to vary the delay time of the delay~ object using
a signal, but this can only be used to define a time expressed in samples, bring-
ing us right back to the “inconvenient” situation we found ourselves in, above.

If we need a continuously variable delay it is always preferable to use the pair of
objects called tapin~ and tapout~, which respectively write and read a signal
(with a pre-defined delay) into a given allocated memory location. The delay
time for these objects is expressed in milliseconds, and can be modified using
a signal, or via Max messages. Furthermore, with a tapin~ and tapout~
pair, it is possible to create a feedback loop in the delay line. In other words,
it is possible to send the delayed sound back into the input of the delay line –
something that is not possible with the delay~ object. One limitation inherent
in a tapin~ and tapout~ pair is that you cannot create a delay time less than
the Signal Vector Size (see section 5.1P), whereas with the delay~ object, as
we already have seen, we can even create a delay as small as one sample. The
tapin~ and tapout~ objects will be very useful throughout the next sec-
tions, so you should be sure to understand and learn how to use them well.
Reconstruct the patch shown in figure 6.3.

Fig. 6.3 The tapin~ and tapout~ objects

2 Another possibility is to convert a value expressed in milliseconds into a value in samples using the
mstosamps~ object which we have already seen in section 2.4P of the first volume.

259Chapter 6P - Delay lines

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

In the upper part of the patch we have a simple algorithm that creates a brief
sound with a random frequency with each successive bang. This sound is
immediately sent to the left channel, and delayed with a tapin~/tapout~
pair on the right channel. Let’s take a closer look at how these objects work.

The tapin~ object takes one argument which defines the maximum pos-
sible delay time in milliseconds (not samples). This object actually “takes
over” (allocates) a chunk of memory whose length in samples is determined
by dividing the argument by 1000 (to convert the duration to seconds) and
then multiplied by the sampling rate. In the case shown here, the argument is
2000 (milliseconds), which equals 2 seconds when divided by 1000, so if the
sampling rate is 44100 the amount of memory allocated by the object would
be 88200 samples. This memory is used by tapin~ to write (i.e., record)
the signal it receives. Each time it arrives at the end of the allocated memory
(after 2 seconds, in our case) it begins again from the memory’s starting loca-
tion, overwriting what had been recorded previously. Technically speaking,
this is known as a circular buffer (see section 6.2 in the theory part of this
chapter), which we could imagine as a loop of magnetic tape running past
a record head (represented by tapin~). The tapout~ object, on the other
hand, functions as a playback head, and reads the same circular buffer at a
certain distance (given by the argument) with respect to the record head of
the tapin~ object it is connected to, thereby creating a delay of the desired
length. In the case of figure 6.3, the circular buffer is 2 seconds long (2000
milliseconds), as indicated by the argument to tapin~, and the current delay
time is 250 milliseconds, as indicated by the argument to tapout~. We will
see how to vary these arguments in the next section.

We would also like to point out that the cable connecting tapin~ and
tapout~, as you can see, is not an audio cable (since it is a plain grey line), but
a connection that allows tapin~ and tapout~ to both share the same circular
buffer. If we connect a print object to the outlet of tapin~ and click on the
“startwindow” message box, we can see the “tapconnect” message printed
in the Max Console. The tapin~ object sends this message to the tapout~
object each time the DSP engine is activated, and is used to allow both objects
to share the same pre-allocated memory zone.

In order to create two read locations along one delay line, it is possible to con-
nect several tapout~ objects to one single tapin~. Alternatively, you could
provide tapout~ with multiple arguments, each one corresponding to a read
location (in milliseconds).

260 Practice - Section 6.2 - Echoes

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

6.2 ECHOES

To create an echo effect using the tapin~ and tapout~ objects, rebuild the
patch illustrated in fig. 6.4.

Fig. 6.4 The Echo effect

Note that the message box on the right has two messages separated by a
comma: the first opens the sound file, whereas the second sets the loop mode
for sfplay~. As we already know, the sound file vs_flute_bouree.wav is con-
tained in the Virtual Sound library and Max should be able to find it without
your needing to specify the entire file path, presuming you have installed this
library correctly. If you want to load a different sound, you will need to send
sfplay~ the “open” message, which will open up a system dialog allowing
you to select the sound file you want to use. If you want to test out the effect
using an instrument or your voice, you will need to connect a microphone to
your audio interface and replace the sfplay~ object with adc~. You can do
this the majority of the patches that we will talk about in this chapter, but just
be careful not to create feedback between the speaker(s) and microphone!
When starting out, we suggest using headphones, until you are confident about
using the effects in a live situation.

The vs.xfade~ object (which we already covered in section 3.5P of the first
volume) located on the left lets you mix the direct (dry) signal coming from
sfplay~ with the delayed (wet) signal coming from tapout~. Remember that
the number sent to the third inlet is used to adjust the proportion between the
signals connected to the first two inlets, in other words it controls the balance:
a value of 0 means only the first signal will be output, a value of 1 means only
the second will be output, a value of 0.5 indicates an equal mix of both, and
so forth.

We can set the delay time by sending a numerical message to tapout~. Click
on the toggle connected to the sfplay~ object and try changing the delay
time to hear the different possible resulting echo effects. Remember that in

261Chapter 6P - Delay lines

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

order to hear a distinct repetition of the sound, the delay time has to be above
the Haas zone, which is in the range of 25-35 milliseconds. Using the sound
file shown in the figure (that of a flute with a fairly soft attack) you really only
sense a clear doubling of the sound when the delay is above 50 milliseconds.
Since the bourée in the sound file is played at 100 bpm, try setting the delay
time to 300 milliseconds (corresponding to a delay of an eighth note, or quaver)
and multiples of it. Using the tapin~/tapout~ pair you can also introduce
feedback in order to create multiple echoes (something that is impossible to do
with delay~). Modify the patch as shown in figure 6.5.

Fig. 6.5 Echo with Feedback

Here, the signal coming from tapout~ is scaled using a signal multiply object
controlled by a floating-point number box (under the label “feedback”). The
scaled signal is sent back to the input of tapin~, where it is added to the new
signal coming from sfplay~.

But be careful! In order to avoid distortion, you should set limits on the values
output by the floating point number box that controls the feedback. To do this,
open the object’s inspector, go to the Value category and set the “Minimum”
and “Maximum” attributes to 0 and 0.99, respectively. These attributes limit
the range of values that can be output by the number box, so you can easily
avoid setting a feedback value greater or equal to 1, and therefore be sure that
the repetitions of the echo will gradually die out.

As we mentioned earlier, feedback can be created using a tapin~/tapout~
object pair, but not with delay~. In fact, MSP does not actually allow feedback
loops3 within the flow of its signal chain.

3 Creating a feedback loop, which causes an error in MSP, should not be confused with looping an
audio file, which we discussed in Chapter 5..

262 Practice - Section 6.2 - Echoes

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

By carefully observing the two loops shown in figure 6.6, we can immediately
see the difference between a loop made with the delay~ object (which will
stop the DSP engine) and one made with tapin~ and tapout~: on the left
side, the audio signal flow is connected in a completely closed loop (all of the
connections are made with yellow and black audio cables), whereas on the right
the audio loop remains open, because the connection between tapin~ and
tapout~ is not made with an audio cable.4

Fig. 6.6 A feedback loop

ACTIVITY

In order to avoid the accumulation of DC offset in the patch shown in figure
6.5, insert a first-order highpass filter (see section 3.4P in the first volume)
between the sfplay~ and the delay algorithm. The cutoff frequency should
be set lower than the audible bandwidth (for example 10 Hz) in order not to
eliminate any meaningful components present in the input signal.

4 As already stated, with this connection, the tapin~ object sends the “tapconnect” message to
the tapout~ object, allowing both objects to share the same circular buffer without an explicit
audio connection.

8

263Chapter 6P - Delay lines

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

SIMULATION OF TAPE DELAY

In order to simulate Tape Delay we need to insert a lowpass filter after the
output of tapout~ (see figure 6.7).

Fig. 6.7 “Tape Delay” with lowpass filter and feedback

Here, we used a Butterworth filter (vs.butterlp~, see chapter 3) to do this.
Try to rebuild this patch by adding the parameters shown in the figure. You will
hear that every copy of the delayed sound is slightly darker in timbre than the pre-
vious one. To hear just the filtering effect by itself, click on the “on/off” toggle
to start the sound file and then, after about a second, click again to stop it.

To avoid continually accumulating low frequencies, as well as to help make
the repetitions themselves clearer, we can also add a highpass filter such as
vs.butterhp~ (figure 6.8). As a welcome side effect, this filter also eliminates
the accumulation of any DC offset that the input signal might possibly contain.

Fig. 6.8 Adding a highpass filter to the tape delay

264 Practice - Section 6.2 - Echoes

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

Try using different cutoff frequencies; using a relatively steep cutoff for both
filters in the medium high frequencies (4000 Hz for the lowpass and 1000 Hz
for the highpass) lets you create a “telephone” sound effect, for example.

ACTIVITY

Starting with the patch in figure 6.7, use different types of filters, such as the
bandpass filter vs.butterbp~ or a filterbank using fffb~ (see section 3.7P),
in order to modify the spectral content of the delayed signal. In all cases, be very
careful of the Q values you use! They should definitely not go under 0, nor be to
high, for that matter. Always start using a feedback value of 0, and then raise it
slowly and cautiously.

(...)

8

265Chapter 6P - Delay lines

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

other sections in this chapter:

 Slapback delay
 Multitap delay
 Multiband-multitap delay
 Ping-pong delay

6.3 LOOPING USING DELAY LINES

6.4 FLANGER

6.5 CHORUS

6.6 COMB FILTERS

6.7 ALLPASS FILTERS

6.8 PHASER

6.9 PITCH SHIFT, REVERSE AND VARIABLE DELAY
 Pitch shifting and reverse
 Real time pitch shifting
 Glissando
 Variable delay without transposition

6.10 THE KARPLUS-STRONG ALGORITHM

6.11 DELAY LINES FOR MAX MESSAGES

• LIST OF MAX OBJECTS - LIST OF ATTRIBUTES, MESSAGES, AND ARGUMENTS FOR SPECIFIC MAX
OBJECTS

DYNAMICS PROCESSORS

7.1	 ENVELOPE FOLLOWERS
7.2	 COMPRESSORS AND DOWNWARD COMPRESSION
7.3	 LIMITERS AND LIVE NORMALIZERS
7.4 	 EXPANDERS AND DOWNWARD EXPANSION
7.5 	 GATES
7.6 	 UPWARD COMPRESSION AND UPWARD EXPANSION
7.7 	 EXTERNAL SIDE-CHAIN AND DUCKING
7.8 	 OTHER CREATIVE USES OF DYNAMICS PROCESSORS

7T

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	The contents of Volume 1, chapters 5 and 6 (theory and practice) and Interlude C

OBJECTIVES
Knowledge

• To know the different types of dynamic processors

• To know the possible uses for envelope followers

• To know the uses and parameters of compressors, de-essers and limiters

• To know the use and parameters of expanders and (noise-)gates

• To know the uses and difference between:
	 downward compression, downward expansion

	 upward compression, upward expansion, parallel compression

	 multi-zone compressors, multi-band compressors

	 compressors with external time threshold, side chain and ducking,
	 adaptive gate and ducker, triggering gates, gate sequencers

	 feedback with controlled dynamics

CONTENTS
• Envelope followers

• Compressors and Limiters
• Expanders and Gates

• Downward, Upward and Parallel Compression
• Downward and upward expansion
• Side chain and ducking

• Technical and creative uses of dynamics processors

ACTIVITIES
• Sound Examples

TESTING
•	Test with short answers

• Listening and analysis test

SUPPORTING MATERIALS
•	Fundamental Concepts – Glossary – Discography

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

In Section 5.1 we spoke of the dynamic range as being the ratio between the
maximum and minimum amplitudes that can be represented by a given piece
of hardware, software or storage medium. This is a purely technical description,
based on the number of bits used. Within this range, defined by the number
of bits, we can make technical and expressive choices that could be different
for each piece or each sound. Although we may be working with a system that
technically has a dynamic range of 90 dB, we could decide to compose a work
for television, whose dynamic range would therefore be reduced, say, to 15 dB.
In this context, the use of dynamics processors does not have anything to do
with the number of bits available (this is predetermined by the working envi-
ronment settings when creating a new project and thus cannot be changed)
but rather on technical and expressive choices that can be used within a given
system in order to change the dynamic range of a sound or piece.

Dynamics Processors are devices that process a sound (or a series of sounds
or even an entire piece) by transforming its dynamic range for a wide variety
of purposes, either technical or creative. Remember that dynamic range is
expressed as a ratio, or difference, between maximum and minimum amplitude,
and is therefore a very different concept from absolute amplitude. For example,
you could have a piece of music whose dynamic range is 20 dB with a maximum
amplitude of 0 dB, and another with the same dynamic range whose maximum
amplitude is -3 dB. We will soon see how to work with both of these parame-
ters, but for the moment it is important just to remember that the main purpose
of dynamics processors is to transform the dynamic range in different ways.

In this chapter we will look specifically at envelope followers / envelope shapers,
different types of compressors and expanders, limiters and gates.

7.1 ENVELOPE FOLLOWER
The envelope follower (sometimes called a peak amplitude follower or envelope
detector) performs the function of extracting the envelope of a sound by mea-
suring the amplitude of its waveform’s peaks. The envelope follower produces a
control signal based on a series of amplitude values extracted from a given sound
A. This control envelope can then be imposed upon another sound B (by simply
multiplying it by the extracted envelope), or used to control the center frequency
of a filter or other effect parameters. There are an endless number of possible
applications: percussive envelopes can be applied to continuous sounds, or the
envelope of a recording of the waves of the sea could be applied to the sound of
a chorus, as will be demonstrated in the examples that follow.

You could even remove the envelope from a sound by dividing the sound’s
signal by its own envelope. Doing this actually cancels out the sound’s enve-
lope by giving it a constant value of 1.1 The resulting sound will thus have no

1 Any number divided by itself is equal to 1.

329Chapter 7T - Dynamics processors

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

330 Theory - Section 7.1 - Envelope Followers

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

changes in dynamics. This is useful, because once its dynamics have been flat-
tened out, the amplitude envelope of an entirely different sound can be effec-
tively applied to it, by multiplying the sound and envelope together.

You could also invert a sound’s envelope, so that when the original sound is at
its maximum peak amplitude, the inverted sound will be at its minimum. These
types of operations are sometimes referred to as envelope shaping.

Another function we will look at is often called balance in some audio program-
ming languages2 (not to be confused with the same term which is commonly
used to indicate control of stereo spatialization). This technique is used in cases
where a filtered sound, for example, is significantly weaker (or louder) than
the original, unfiltered sound. A typical example would be when the center
frequency of a bandpass filter is not present or has a very low amplitude in the
original sound. Using the balance algorithm, the envelope of the original sound
can be applied to the resulting filtered sound.

SOUND EXAMPLE 7A.1

a) Envelope of a piano imposed on the sound of a flute
b) Envelope of a snare drum applied to a trumpet
c) Excerpt from Cipriani, A., Aqua Sapientiae/Angelus Domini: envelope of

sounds of ocean waves applied to contrapuntal voices.

An envelope can be measured using different types of systems: one of these,
described by Dodge and Jerse, uses a technique called rectification, which
amounts to transforming the amplitude values of the samples that make up
a sound into absolute values (i.e., without a + or - sign). This way all negative
sample values will become positive. The “rectified” signal is then sent to a
lowpass filter (with a sub-audio cutoff frequency) which is used to round out
the sharp edges of the waveform. If the filtering is too excessive, the resulting
curve will be too far from the original, but if the filtering is too light you will
notice some bumps and a general “edginess” to the envelope. Therefore, it is
important to know what kind of lowpass filter should be applied, based on both
the complexity of the envelope in sound A, and the eventual use the envelope
will be put to as a control signal. Nonetheless, it is always good to have higher
definition when extracting complex envelopes.
Another system is based on calculating the average of the absolute values of
the of the samples’ amplitudes. In this case, the degree of definition of the
envelope will be due to the number of samples uses to calculate the average:
the more samples that are used, the less accurate will be the envelope’s profile.

2 Cfr. Dodge and Jerse 1997, p. 181

8

331Chapter 7T - Dynamics processors

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

The control signal generated by an envelope follower can also be applied to
filter parameters, as we mentioned earlier. For example, you could decide that
the control signal from an amplitude follower (with appropriately scaled values)
could be used to control the center frequency of a bandpass filter or the cutoff
frequency of a lowpass filter. These filters can affect a second sound, or be
used to modify the original sound itself. (Be careful not to confuse the rounding
function of the first lowpass filter, which helps create the control signal output
by the envelope follower, with the second lowpass filter that is itself controlled
by the envelope follower’s output, in order to affect another sound.) Using this
system you can also obtain a result similar to that of a VCF of an analog syn-
thesizer (described in Section 3.5T), in which the frequency of a filter depends
on the amplitude envelope, following its profile, and resulting in a more bril-
liant sound when the amplitude is at its maximum and a darker sound as the
amplitude decreases. This actually corresponds to the behavior of a wide range
of acoustic instruments.

SOUND EXAMPLE 7A.2

a) Envelope follower controlling the filtering of a second sound (bandpass)
b) Envelope follower used to control the filtering of a second sound (lowpass)
c) Envelope follower used to control the filtering of the same sound whose

envelope was extracted (bandpass)
d) Envelope follower controlling the filtering the sound whose envelope was

extracted (lowpass).

7.2 COMPRESSORS AND DOWNWARD COMPRESSION

THE COMPRESSOR
A compressor3 is a dynamics processor used to reduce the dynamic range of
a sound. There are many uses for compressors – both technical and creative
– so this remains an important device in the electroacoustic sound-processing
chain. Before going into the many possible uses for this device, let’s try to
describe something similar to what happens inside a simple compressor.
Imagine we have an amplifier with a single volume knob, and an input sound
that varies in unpredictable ways. We want this sound to always maintain a

3 Warning! The word compression can be ambiguous, since it is used both for data reduction (as
we discussed in section 5.3) and compression intended to reduce the dynamic range of a sound
(which is being covered in this section). For this reason, in Chapter 5 we referred to the reduction
of data specifically as “data compression,” leaving the simple term “compression” to indicate a
reduction in dynamic range.

8

332 Theory - Section 7.2 - Compressors and Downward Compression

high output sound pressure level, but not above a certain intensity. How do
we do this? As soon as we realize the sound has gone above a certain thresh-
old, we can immediately reduce the gain (in other words, lower the volume),
and when the sound goes below the threshold we can bring the gain back to
its original position.

- What is the threshold above which we lower the volume?
- How much should we lower it?
- How fast should we turn the knob to lower the volume?
- How fast should we return the knob to its original position?

By answering these questions we get closer to understanding some of the basic
concepts of compressor parameters:
Threshold: over what threshold in dB does a compressor begin to take effect?
Compression ratio (or slope): how is the amplitude scaled when it is above the
threshold?
Attack time: for each increase in amplitude, how much time, starting from the
moment when the input signal exceeds the threshold, does it take the compres-
sor to reach the determined ratio via a reduction in gain?
Release time: for every decrease in amplitude, how much time does it take the
compressor to reach the determined ratio via an increase in gain?

It is also important to mention here that a lot of literature on the subject insists
on the false notion that the release happens only when the sound drops again
below the threshold or that the attack happens only when it goes above the
threshold. In reality, the release happens with every decrease in amplitude,
even when the sound remains above the threshold. Only the final release that
takes place will actually correspond to the return of the sound’s amplitude
to the level below the threshold.4 In the same way, as long as the sound is
above the threshold, an attack will happen each time there is an increase in
amplitude.

Some of the possible uses for a compressor are:
- to make the voice of a speaker more easily understandable. In the

case of something like a documentary film, there might be a section with
both music and ambient sound where we additionally might want to supe-
rimpose the voice of a speaker without reducing the level of the other two
signals very much, but be able to keep the voice clearly comprehensible.
In such a scenario there could be some phonemes pronounced by the
speaker that could be easily masked by the music, while others remained
clear (i.e., having the right intensity). A compressor could be used to atte-
nuate only the loudest parts, without affecting the soft parts, so that, once
leveled-out, the entire signal could be globally increased to be able to be
understood above the music.

4 For more information, see Izhaki, R., 2012, pp. 280-1

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

333Chapter 7T - Dynamics processors

-	 to create musical effects: the very heavily compressed sound of an
electric guitar is well-known in the rock world – this practically makes the
attack of each note disappear, eliminating the characteristic sound of the
plucked string. Also, strong compression on a voice will compress vocal
peaks, allowing all the less evident vocal sounds like breath and sounds
produced by moisture in the mouth to come to the fore..

-	 to compress the dynamic range in order to be able to increase the ove-
rall level of the signal. If a given piece of music has some peaks at 0 dB
but the vast majority of the sounds in the piece have a much lower inten-
sity, it is impossible to increase the amplitude of the entire signal because
the peaks, which are already at the maximum amplitude 0 dB, will become
distorted. Therefore, if we apply a compressor to reduce all the peaks to -3
dB, but leaving the low intensity sounds untouched, we can then increase
the overall level of the compressed signal by 3 dB, bringing the peaks back
to 0 dB, but also increasing the level of all the other sounds present in the
signal. If this function is applied to an entire audio file (for example to an
entire piece of music during the mastering process) as well as to a sound
or series of sounds, using a limiter (which we will talk about later in this
chapter) is generally preferred.

-	 to level-out unequal sound pressure of selected instruments: for
example with wind instruments which tend to produce greater intensity
for high frequencies than they do for lower ones. In this case, as we will
see, we could use a multi-band compressor.

-	 to reduce sibilance in vocal sounds. This is possible using a special com-
bination of a lowpass filter and a compressor. For this purpose there exists
a special compressor called a de-esser (useful when a speaker or singer
has S sounds that are too sibilant), which we will discuss at the end of this
section.

SOUND EXAMPLE 7B.1 • Examples of Compression
(examples before and after compression)

a) Voice of a speaker rendered more understandable using compression
b)	Compression as a means to change timbre (electric guitar example)
c)	Use of compression to increase the overall level of a signal
d)	Use of compression to level the unequal sound pressure of some instru-

ments
e)	Use of a de-esser to reduce sibilance of a voice.

8

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

334 Theory - Section 7.2 - Compressors and Downward Compression

COMPRESSOR PARAMETERS AND DOWNWARD COMPRESSION

There are two distinct types of compression: downward compression, which
attenuates peaks above a threshold (this is the kind of compression we have
been discussing up to now), and upward compression, which increases the
level of low intensity zones (which we will discuss later).

Fig. 7.1 Downward and upward compression5

We can’t provide you with any hard and fast rules for regulating all the param-
eters of dynamics processors, because one situation can be vastly different from
another, and there are often many different strategies to achieve the same
results. Therefore, we will simply provide you with some rudimentary informa-
tion along with a little bit of advice. In this section we will take a look at the
various parameters of a compressor in detail and analyze them from the point
of view of downward compression (i.e., attenuating peaks above a threshold).
Remember that the parameters we are dealing with are:

(...)

5 Image adapted from Izhaki, R., 2012, pag. 263

input

threshold

Downward compression

output input output

Upward compression

threshold

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

335Chapter 7T - Dynamics processors

other sections in this chapter:

 Knee (or curvature)
 The relationship between threshold and ratio
 Attack (in milliseconds)
 Release (in milliseconds)
 Gain reduction meter
 Output gain or gain makeup
 Side-chain
 The structure of a compressor
 Parallel compression
 Multi-band compressor
 The de-esser

7.3 LIMITER AND LIVE NORMALIZER
 The limiter
 The live normalizer

7.4 EXPANDERS AND DOWNWARD EXPANSION
 The expander
 Parameters of the expander
 Threshold
 Ratio
 Knee
 Attack
 Release
 Gain reduction meter
 Output gain or gain makeup
 Side-chain

7.5 GATES

7.6 UPWARD COMPRESSION AND UPWARD EXPANSION
 Upward expansion
 Upward compression
 Operations and dynamics processors
 Upward parallel compression

7.7 EXTERNAL SIDE CHAIN AND DUCKING

7.8 OTHER CREATIVE USES OF DYNAMICS PROCESSORS
 Adaptive gate
 Adaptive ducker
 Triggering gate
 Gate-sequencer (live slicing)
 Feedback with controlled dynamics

• FUNDAMENTAL CONCEPTS - GLOSSARY - DISCOGRAPHY

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

DYNAMICS PROCESSORS

7.1	 ENVELOPE FOLLOWERS
7.2	 COMPRESSORS AND DOWNWARD COMPRESSION
7.3	 LIMITERS AND LIVE NORMALIZERS
7.4 	 EXPANDERS AND DOWNWARD EXPANSION
7.5 	 GATE
7.6 	 UPWARD COMPRESSION AND UPWARD EXPANSION
7.7 	 EXTERNAL SIDE-CHAIN AND DUCKING
7.8 	 OTHER CREATIVE USES OF DYNAMICS PROCESSORS

7P

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	The contents of Volume 1, chapters 5 and 6 (theory and practice), Interlude C

and Chapter 7T

OBJECTIVES
Abilities

•	To be able to apply the envelope of one sound to another sound or other parameters

•	To be able to construct algorithms for envelope followers, downward and
upward compression, parallel compression, de-esser, limiters and live normalizers

• To be able to apply appropriate parameter values to any kind of dynamics processor.
•	To be able to build algorithms for gates, downward or upward expanders, side

chain and ducking

•	To understand how to use dynamics processors for both technical and creative
purposes

CONTENTS
• Envelope Followers

• Compressors, Limiters, Live Normalizers and de-essers

• Expanders and Gates

• Creating Downward and Upward compression and expansion
• Creating parallel Compression

• Creating external Side chains and ducking

• Creating adaptive gates and duckers, triggering gates, gate-sequencers and feed-
back with controlled dynamics

ACTIVITIES
•	Building and Modifying Algorithms

SUPPORTING MATERIALS
•	List of Max objects - List of commands, attributes, and parameters for specific Max

objects

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

7.1 ENVELOPE FOLLOWERS

There are different ways to create an envelope follower in Max. As we will
discover, each of these methods has its own qualities that make it more or less
useful for different possible applications. We will analyze the different ways an
envelope follower can be designed, and consider the most effective uses for
each of them.

The first object that we will learn is average~. Rebuild the simple patch shown
in figure 7.1.

Fig. 7.1 Envelope following with average~

This object creates a signal representing an average of the input sample val-
ues. As you can see in the figure, its output signal follows the dynamic profile
– i.e., the envelope – of the input signal. The first argument to average~
indicates the number of input samples that will be taken into consideration
when calculating the mean value, or average (this is 1000 in the figure). The
second argument (“absolute” in the figure) specifies the mode that will be
used to calculate the average. The three possible modes are:

1) bipolar (the default mode): this mode simply calculates the average of the
input samples. More specifically, the sample values are summed and the
result is divided by the number of samples used for the sum. For audio
signals this average tends to be near zero, especially when using a large
number of samples (at least as many as there are in one cycle of an input
waveform), because the equivalent quantities of positive and negative val-
ues in a bipolar signal tend to cancel each other out.

2) absolute: here, the average is calculated using the absolute value of the
input samples (i.e., they are always positive values). This is the mode shown
in the figure.

373Chapter 7P - Dynamics processors

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

374 Practice - Section 7.1 - Envelope followers

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

3) rms (root mean square). In this mode, the input samples are first
squared (consequently becoming all positive) before being averaged.
The square root of this average is then calculated. Although this method
is more expensive in terms of CPU usage, it provides the most accurate
results. Nonetheless, the absolute mode is generally sufficient in many
situations.

You can change the operational mode by sending the messages “bipolar,”
“absolute” or “rms” to the average~ object, and additionally change the
number of samples it uses to calculate the average by sending it an integer
value. Note that this value cannot be greater than the numerical argument you
provided.

So, just how many samples do we need to use in order to obtain adequate
envelope following? Unfortunately, it is impossible to define a good value
that would work in all situations. Nonetheless, you should be aware that as
the number of samples increases, any accents in the input sound will tend to
be smoothed-out in the resulting envelope-followed signal. Conversely, as the
number of samples decreases, the envelope will begin to more and more faith-
fully follow the amplitude peaks in the original signal, until the point where one
sample is used for the “average,” thereby just reproducing the instantaneous
sample values of the input waveform.

We can now apply the envelope obtained from average~ to a signal with a
constant amplitude. Modify the patch as shown in figure 7.2.

Fig. 7.2 Envelope applied to an oscillator

In this example, the envelope from a drum loop sound is applied to a sinusoidal
oscillator at 1000 Hz. When you activate the patch you will probably notice that
the envelope applied to the oscillator seems to be delayed with respect to the
direct drum sound. This happens because each sample output by average~

375Chapter 7P - Dynamics processors

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

results from averaging the preceding 1000 samples. A simple solution to correct
this would be to delay the direct signal (the one going from sfplay~ to the
gain~ object) until the two sounds seem to be in sync. Try this out by inserting
a 200-300 sample delay.
Now, try modifying the number of samples that average~ uses to calculate
the mean by connecting a number box to the object. What happens when you
use 1000 samples? What about with 10 samples? Or with just 1?

We can also use the envelope obtained from the envelope followed to control
some sound processing parameters. Modify the patch as shown in figure 7.3.

Fig. 7.3 Envelope controlling a filter

Here, the sound vs_walking_bass.wav has been loaded, and the envelope calcu-
lated by the average~ object is used to control the lowpass filter that is applied
to this sound file. As you can see, the frequency of the filter follows the dynamic
profile of the sound. The amplitude of the envelope is multiplied by 10000 and
then the value 100 is added to it and the result is used as a cutoff frequency.
Actually, in this example the signal generated by the envelope follower will
rarely exceed 0.1, so the maximum cutoff frequency will be around 1100 Hz
(10000 · 0.1 + 100). Try changing the values of the multiplier, addition, Q fac-
tor (second argument to the filter) and the filter type (for example, try using a
highpass filter).

376 Practice - Section 7.1 - Envelope followers

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

Let’s now take a look at how we can control different parameters using the
envelope follower; open the patch 07_01_envfollow.maxpat (figure 7.4).

Fig. 7.4 The file 07_01_envfollow.maxpat

In this patch, the envelope follower is used to control both the delay time and
the cutoff frequency of a filter simultaneously. The signal output by sfplay~ is
sent to an average~ object that creates the envelope (in rms mode) and sends
it to two subpatches. The first subpatch, [p delay], takes the envelope in its sec-
ond inlet and uses it to control the delay time of the sound sent to its left inlet.
The delay time can vary between the given minimum and maximum values (via
the two flonum objects labeled “mindel” and “maxdel”), and could optionally
include feedback. The delayed signal is sent out the left outlet of the subpatch,
while its right outlet outputs the actual delay time (displayed in the number~
object). The contents of the subpatch are fairly simple (figure 7.5).

The signal outptut by average~ (“env” inlet) is sent to a scale~ object that
modifies the 0-1 range of the envelope into the mindel-maxdel range set in the
main patch.1 The delay time is sent to the tapin~/tapout~ object pair with
feedback on the left side of the subpatch.

1 Note that it is very unlikely that the envelope values output by average~ will ever get close to the
maximum value of 1, and therefore also unlikely that you will ever reach the maximum delay time.
Therefore, this should be taken into account when setting the “maxdel” parameter.

377Chapter 7P - Dynamics processors

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

Fig. 7.5 The [p delay] subpatch

Next, the delayed signal in the main patch is sent to the [p filter] subpatch, which
uses the envelope to modulate the cutoff frequency of a filter. The parameter
here is also scaled between a minimum and maximum range (“minfreq” and
“maxfreq”), and it is additionally possible to control the filtered signal’s ampli-
tude (“gain”) and Q factor.

(...)

other sections in this chapter:

7.2 COMPRESSORS AND DOWNWARD COMPRESSION
 Parallel compression
 Multi-band compression

7.3 LIMITER AND LIVE NORMALIZER
 Live normalizer

7.4 EXPANDERS AND DOWNWARD EXPANSION

7.5 GATES

7.6 UPWARD COMPRESSION AND UPWARD EXPANSION

7.7 EXTERNAL SIDE-CHAIN AND DUCKING
 Ducking

7.8 OTHER CREATIVE USES OF DYNAMICS PROCESSORS
 Adaptive gate/Ducker
 Triggering gate
 Gate sequencer (live slicing)
 Feedback with controlled dynamics

• LIST OF MAX OBJECTS - LIST OF COMMANDS, ATTRIBUTES AND PARAMETERS FOR SPECIFIC MAX OBJECTS

ADVANCED PRESET MANAGEMENT,
BPATCHER, VARIABLE ARGUMENTS,
DATA AND SCORE MANAGEMENT

ID.1	 ADVANCED PRESET MANAGEMENT
ID.2	 BPATCHER, VARIABLE ARGUMENTS AND LOCAL ARGUMENTS
ID.3	 MANAGING DATA AND SCORE WITH MAX

Interlude D

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	The contents of Volume 1, chapters 5, 6 and 7 (theory and practice) and Interlude C

OBJECTIVES
Abilities

• To know how to manage complex data storage systems

• To know how to control the partial or total visualization of abstractions and
subpatches inside a patch

• To know how to use variable and local arguments in abstractions and subpatches

• To know how to manage data sets and create algorithms for controlling
“scores”

CONTENTS
• Advanced systems for managing presets and interpolating between them

• Systems for visualizing abstractions and subpatches inside a patch

• Data management in Max

SUPPORTING MATERIALS
•	List of Max objects - List of attributes, arguments, messages and commands for

specific Max objects - Glossary

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

ID.1 ADVANCED PRESET MANAGEMENT

Up until now we have been using the preset object to control the parameters
present in a patch. This allows us to quickly and easily store and recall the values
contained in interface objects such as number boxes or multisliders. Figure ID.1
shows a brief résumé of this object’s features.

Fig. ID.1 The preset object

It is possible to include or exclude specific objects from the preset storage
using the first and third outlets. Let’s take a look at how this works.

- When no objects are connected to the preset object’s first and third out-
lets, it will store the values of all the interface objects present in the patch

- When one or more objects are connected to the first outlet, only the values
of those objects will be stored, and all others will be ignored

- When one or more objects are connected to the third outlet (but nothing
connected to the first), the values of these objects will be ignored and the
others will be stored (we have often used the third outlet to exclude storing
the values of objects used to control audio output volume, such as gain~ or
live.gain~, because the settings for these are dependent on the listening
setup being used).

- If there are objects connected to both the first and third outlets, these
object will be stored or ignored, respectively, and any other objects in the
patch (which are not connected to the preset object) will be ignored.

433Interlude D - Advanced preset management

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

434 Practice - Section ID.1 - Advanced preset management

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

As we previously learned, in order to store a preset you just need to shift-click
on one of the preset object’s dots with the mouse. A simple click is used
to recall one of the stored presets. You can also recall a preset by sending
an integer value to the preset object’s inlet – a value of 1 corresponds to
the first dot, 2 to the second, and so on. To save a preset you can also send
the “store” message to the inlet followed by a preset number. The “clear”
message, followed by a number, can be used to delete a specific preset and
the “clearall” message to delete all stored presets.

Whenever a preset is recalled, the corresponding number is sent out the sec-
ond outlet, and when a preset is stored, the number is sent out the fourth
outlet. Note that in the patch shown in the figure, the number box connected
to the inlet has been excluded from preset memorization – can you figure
out why?

Although simple and functional, preset is fairly limited where parameter
management is concerned. For example, it cannot store the state of interface
objects contained in subpatches, nor can it interpolate values between two
presets. In the next section we will take a look at a more refined (though,
needless to say, more complex) system for preset control and management.

THE PATTR OBJECT
The pattr object is a universal data container (that is, it can store numerical
values, lists or symbols) which is capable of sharing its contents with Max’s
interface objects. Furthermore, the object can also be used to help us take our
first steps toward a more advanced system for preset management. Let’s look
at some of the features shown in the patches presented in figure ID.2.

Even though these example patches are very simple, we still recommend that
you recreate all six of them shown in the figure, because some features of the
pattr object work quite differently from the standard Max object behaviour
that you have learned so far.

In patch number 1, we can see that a pattr object accepts any kind of mes-
sage (numbers, symbols or lists), and that these messages are immediately
passed through to the object’s left outlet. A bang can be used to re-send the
last message received. It is also possible to “bind” an interface object to a
pattr by connecting the second outlet of pattr to the interface object, as
shown in patch number 2. Any value output by the interface object will also be
stored in pattr and sent to its left outlet. And, as you can see in patch 3, a
value sent to pattr will be forwarded to the “bound” interface object in addi-
tion to being sent out the left outlet.

The first argument to pattr defines its scripting name. Every pattr object is
required to have its own scripting name, so if no argument is provided, a default
scripting name will be assigned by Max (see patch number 4). The second argu-
ment to pattr specifies the scripting name of an interface object, allowing it

435Interlude D - Advanced preset management

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

to be bound to the pattr without a connection. When you rebuild patch num-
ber 5, you will need to assign the scripting name “guitar” to the floating-point
number box using the inspector. In order to make sure the object is properly
bound to the pattr, you will need to first assign its scripting name and then
create the [pattr blue guitar] object afterward. Note that in this case we now
have two scripting names: one for the pattr object and one for the fl onum.
It is not possible to assign the same name to both the pattr and the fl onum
because each object’s scripting name must be unique1.

Fig. ID.2 The pattr object

We can also bind an interface object to a pattr “on the fly” by sending pattr
the “bindto” message followed by the scripting name of an interface object
(shown in patch 6).

When a patch containing pattr is saved, the data contained in the object will
be saved and recalled each time the patch is opened. The use of this feature can
be set with the “autorestore” attribute, which is enabled by default.

1 We have already learned that some objects, such as buff er~ and groove~, can share the same
name. However, in these cases it is not the objects’ scripting name that is shared, but rather a
named memory space that contains the shared data.

436 Practice - Section ID.1 - Advanced preset management

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

To test this out, set the value of the slider in patch 3 to halfway along the slider
and then save and reload the patch: the slider’s cursor will appear in the same
position it was when the patch was saved and not at 0, as it would be for an
“unbound” object.

THE PATTRSTORAGE OBJECT
Apart from the autorestore function, the pattr object doesn’t yet seem to
offer any particularly new features that we couldn’t also make ourselves using
a pair of send and receive objects and the pvar object. However, by using
the pattr object together with the pattrstorage object we can do some
new and interesting things. Open the patch ID_01_pattrstorage.maxpat
(figure ID.3).

Fig. ID.3 The file ID_01_pattrstorage.maxpat

The pattrstorage object is the heart of this built-in preset management
system, since it lets us save and recall the values contained in all pattr objects.

The three fl onum objects at the top of the patch have been given the scripting
names “freq”, “cut”, and “qfact”, and are consequently bound to the three
pattr objects visible to their left. Note that each of the three pattr objects
has been given two arguments: the first is the scripting name of the pattr
itself, and the second is the scripting name of one of the three number boxes
to the right. Activate the DSP engine and click on the three message boxes with
the values 1, 2 and 3 at the center of the patch – each of these can be used to
select one the three presets saved in the pattrstorage object.

(...)

437Interlude D - Advanced preset management

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

other sections in this chapter:

 The autopattr object
 Preset and pattrstorage

ID.2 BPATCHER, VARIABLE ARGUMENTS AND LOCAL
 ARGUMENTS
 The bpatcher object
 Variable and local arguments
 Arguments and attributes inside abstractions and
 subpatches

ID.3 MANAGING DATA AND SCORES WITH MAX
 The table object
 The coll object

• LIST OF MAX OBJECTS - LIST OF ATTRIBUTES, ARGUMENTS, MESSAGGES AND COMMANDS FOR
SPECIFIC MAX OBJECTS - GLOSSARY

THE ART OF ORGANIZING SOUND:
MOTION PROCESSES

8.1	 WHAT ARE MOTION PROCESSES?
8.2	 SIMPLE MOTION
8.3	 COMPLEX MOTION
8.4	 EXPLORING MOTION WITHIN TIMBRE
8.5	 COMPOUND MOTION
8.6	 ALGORITHMIC CONTROL OF MOTION
8.7	 INTRODUCTION TO MOTION SEQUENCES

8T

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	The contents of Volume 1, chapters 5, 6 and 7 (theory and practice), Interlude C

and D

OBJECTIVES
Knowledge
•	To know the various possible modalities of sound motion

• To know the inter-relationship between different types of motion

• To know the types of motion that can bring out a perceptual transition between
one parameter and another

• To know some different possibilities for motion inside Timbre

• To know the limits and ambiguities concerning the categorization of motion

CONTENTS
• Simple, complex and compound motion

• Motion Sequences

• Types of motion within a timbre

ACTIVITIES
• Sound Examples and Interactive Examples

TESTING
• Listening and analysis test with short answers (maximum 30 words)

SUPPORTING MATERIALS
• Fundamental Concepts - Glossary

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

The domain where music takes form is a heavily spatialized temporality. But
to be clear: music does not thereby become visual; it exists and persists wholly

within the ear. Nonetheless, its organization and logic-based connections
come into our minds via the visual world – the world of space. [...] We thus

find ourselves confronting the very breath of matter itself.
(Salvatore Sciarrino, 1998)

Our principal metaphor for musical composition must change from one of
architecture to one of chemistry. [...] This shift in emphasis is as radical as

possible – from a finite set of carefully chosen archetypal properties governed
by traditional “architectural” principles, to a continuum of unique sound

events and the possibility to stretch, mould and transform this continuum in
any way we choose, to build new worlds of musical connectedness.

(Trevor Wishart, 2004)

– to compose no longer with notes but with sounds;
– to no longer compose only sounds but the differences that distinguish them

from one another;
– to act on these differences – namely, to control the evolution (or the non-

evolution) of the sound and the speed of this evolution;
(Gerard Grisey, 2001)

8.1 WHAT ARE MOTION PROCESSES?

INTRODUCTION
Up until now we have been creating single sounds or even sequences of
sounds without any particular inclination to explore how they can be artfully
organized into larger forms. From this point onward we will begin to work on
the sounds’ various possible articulations, as well as their motion. This chapter
(alongside the corresponding practice chapter) is designed to further enhance
the theoretical knowledge and practical skills you have learned thus far (both in
terms of sound analysis and listening as well as in terms of programming), and
to bring out your creativity and capacity to build motion processes. As already
mentioned in the introduction to this volume, we will limit ourselves to sound
articulations under one minute in duration, exploring an intermediate area
between the micro-form inherent in individual sounds, and the macro-form
of an entire sound composition.1 In this chapter we will therefore discuss the
motion processes of sound independently of a more extensive formal scope
and context, namely that of an actual sound composition. This does not neces-
sarily mean that your creative process needs to follow this sequence (from the
creation of individual sounds, to motion processes followed by the construction

1 The term “composition” is being used here to mean an activity and experience that goes beyond
just musical composition in the literal sense, but also encompasses works of sound art, sound
design, audio-visual works, soundtracks, soundscapes, etc.

483Chapter 8T - The Art of Organizing Sound: Motion Processes

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

484 Theory - Section 8.1 - What Are Motion Processes?

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

of an overall compositional form), but nonetheless this progressive order works
well from a purely pedagogical perspective.

In practice, every sound artist follows his or her own way of building a sonic
form in time and/or space, whether that means starting from the project as a
whole, working on the detailed specification of its sound components at a later
stage, working at all structural levels simultaneously or actually entrusting the
computer to make some of the formal choices.

For the creation of interactive installations (even those that exist online), the
compositional forms used may not take on specific predetermined shapes, so
the purpose of the composer/artist in such a context is to design an interactive
environment where the form is constantly recalculated, based on the choices of
users inside that environment.

Finally, a sound designer who wants to create sounds destined for moving
image, interactive games, and the like, will have to make formal decisions that
relate to environments created by others, or developed by third parties.

All of the topics covered in this chapter should be beneficial for any type of
creative sound work regardless of its eventual intended purpose. When com-
posing, constructing and processing timbres right down to the minutest detail,
it is actually very important to know how to create and manage the various
structural levels (from the micro to the macro) relative to the goals of the cre-
ative project at hand. Therefore it is also important to know how to listen to
and evaluate the results, by “zooming” in and out from one level to another.
Horacio Vaggione speaks of this as “an action/perception feedback loop”.2
“As a painter who works directly on a canvas must step back some distance to
perceive the result of his or her action, validating it in a variety of spatial per-
spectives, so must the composer dealing with different time scales.3 This being
so, a new category must be added to the action/perception feedback loop, a
kind of ‘shifting hearing’ allowing the results of operations to be checked at
many different time scales. Some of these time scales are not audible directly
and need to be validated perceptually by their effects over other (higher) time
scales.”4

One such shift in hearing is going from listening to individual sounds as
independent units, to listening to the motion inherent in the sounds them-
selves. By listening in this way, we are able to notice the effects of sounds by

2 “The meaning of any compositional technique, or any chunk of musical knowledge, arises from its
function in support of a specific musical action, which in turn has a strong bearing on the question
of how this action is perceived. Action and perception lie at the heart of musical processes, as these
musical processes are created by successive operations of concretization having as a tuning tool – as
a principle of reality – an action/perception feedback loop.” (Vaggione, 2001, p.61)
3 We could also extend this idea further by adding: “and in space.”
4 (Vaggione, 2001, p.60)

485Chapter 8T - The Art of Organizing Sound: Motion Processes

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

“observing” them from a slightly higher structural level, but not so high that
we “look at” them in the context of an entire creative work. Nonetheless,
both the theory and practice sections of this chapter are designed to help you
develop a “mobile” sense of listening and the ability to set an action/percep-
tion feedback loop into motion within the context of your own knowledge,
skills and creativity.

MOTION PROCESSES

Motion Processes are evolutions within sound that happen via variations in
spectrum or space or which can occur through interactions between these and
other parameters.5

There can be multiple types of motion (even contrasting or ambiguous ones)
within a single sound sequence, so it is very important for anyone working
with sound to learn how to control and create complex motion sequences that
evolve from an organic combination of simple types of motion, and lead to the
creation of rich sonic environments. In this chapter (and in the corresponding
practice chapter) we will offer the reader some different technical approaches
that may be taken in order to create the kinds of sounds exemplified by the
types of motion being described.

5 This term was adapted from an article by Denis Smalley (Smalley 1986), and is fundamental to
understanding the compositional process in electronic (and other kinds of) music. For Smalley, motion
processes are processes of evolution within sound that can happen through variations in spectrum
or space, or by the interaction of these and other parameters. The point of view from which Smalley
observes motion in sound is not a technological one – he does not even touch upon electroacoustic
processes and techniques used for the production of music. His emphasis focuses on concentrated
listening and the aspects of sound that emerge from such listening. The terminology that Smalley
uses to describe the different types of sonic motion can also be useful to help us better understand
and listen to pieces of electroacoustic music with greater awareness, even though they may not have
a printed score. (Naturally this also applies to composing such music, for those who have the skill
and desire to do so.) However, there is one important difference between Smalley’s notion and ours:
from our perspective, motion processes are not merely considered from a listening point of view, but
also from a technical-creative one. The upshot of this is that the idea of something like unidirectional
motion, from our standpoint, does not simply represent an audibly recognizable increase or decrease
in frequency, for example, but rather a general increase from lower to higher values (or vice-versa)
in different perceptually relevant domains, such as frequency, duration, amplitude, etc. In this way,
unidirectional motion can be understood in the broadest possible terms: transversal movement in
relation to its parameters. The task of separating all the parameters in a sound, although extremely
useful when listening to a piece analytically, must give way to expectations of complexity and
interrelationships of sounds within the field of sound creation; these ideas will be developed further in
the chapter dedicated to sound creation in the next volume. The technical and compositional purposes
of this book lead us to work within an essentially different process than that of Smalley’s concept of
“spectromorphology”. Therefore, our purpose in listening to sounds is not to arrive at a definition of
their characteristics and possible evolution in time, but rather to begin with definitions and listening in
tandem with one another, in order to work toward the creation of sonic motion.

486 Theory - Section 8.1 - What Are Motion Processes?

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

Nonetheless, you should be aware that you may find yourself confronted with
examples whose motion may have a very different sense when defined from
a technical perspective than it would when observed from a perceptual stand-
point. This should not actually pose any problems, per se, but rather offer an
opportunity to contemplate how one is constantly in contact with contradic-
tions and ambiguities while in the act of organizing sound6, and that getting to
know and accepting these elements will provide richness and multiple levels of
meaning to your work.

However, our aim here is not to build a regular and coherent theory, but to take
an open, interactive educational approach (even sometimes a problematic one)
where the reader can genuinely and practically begin to take his/her first steps
and eventually venture out to make his/her own choices and discoveries.

Naturally, it is important to understand that, from a creative perspective, our
goals, methods and ways of looking at the parameters and properties of sound
are also sometimes very different from those when dealing with sound from a
physical point of view.

For example, during the process of creating a musical work we are able to pass
from the time domain to the frequency domain with ease. Furthermore, where
perception is concerned (and hence also where music is concerned), we tend to
mix parameters of highly differing natures, passing through different notions of
time and space and exploring the boundaries between one property of sound and
another. Therefore, in order to be able to talk about the art of organizing sound,
we need to mix different approaches in a way that would be irreconcilable for
a scientist (because the necessary leaps in logic could neither be formulated nor
verified by any kind of scientific method) so we will need to review some of the
concepts that we have learned in previous chapters from a broader perspective
(or at least less rigorously from a technical stance), but one which is closer to the
approach which needs to be taken by composers, sound artists and sound design-
ers. In particular, we will consider frequency, amplitude and duration to be basic
parameters whose organization in time gives way to other, more complex sound
properties such as timbre, rhythm and spatialization. Often, we will find ourselves
moving from one to the other smoothly without a break, since this chapter has
been designed to provide an experiential path to be followed. Even the categories
that will be introduced here should only serve as points of reference to help you
better understand their limits and boundaries.

6 This is the broadest term we can use to describe creating and giving structure to sound using new
technologies. It was coined by Leigh Landy in his influential book (Landy 2007), and also relates to
the concept of “organized sound” proposed by Edgar Varèse.

487Chapter 8T - The Art of Organizing Sound: Motion Processes

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

MOTION CATEGORIES

We have chosen to use just a few categories, organized in increasing order of
complexity:

Simple Motion
 - motion resulting from changes in the values of just one parameter of one sound

Complex Motion (which contains simple motions)
 - motion resulting from changes in the values of several of a sound’s parameters

Compound Motion (which could also contain simple and/or complex motions)
 - motion characterized by changes in the values of the parameters of several sounds

Motion Sequences (which could contain any type of motion)
 - a series of motions which relate to one another

These categories are not absolute and unconditional – they are simply based on
conventions which we have adopted, and many “gray-zones” exist in-between
them. Let’s take a look at a couple of examples of these kinds of ambiguous areas.

1) Ambiguity arising from the distinction between motion in one sound
(simple and complex motion) and motion in several sounds (compound
motion). What, precisely, is a single sound? This entirely depends on our percep-
tion of that sound – some sounds (the sound of the sea, for example) can either
be considered a single sonic element or a composite sound made up of several
simultaneous autonomous units (such as the sound of waves). The intentions of
the person working with the sound should also be taken into consideration: a
sound with many components can move as a single object, or the parameters
controlling its various components can be moved separately.

A sound recorded to an audio file or originating from an algorithm could also
contain compound motion but if we deal with the sound as a single unit, such
as changing its overall intensity, this motion could be considered to be simple
because it acts on just one of the sound’s parameters. On the other hand, if
we separately affect the various individual sounds that make up the composite
sound, we would be creating compound motion.7

2) Ambiguity between simple and complex motion within a system that
it is in and of itself complex. Let’s take the use of filters as an example. If we
add a filter with an upward-moving cutoff frequency to a sound, the movement
of this filter is an example of simple motion, since just one parameter is being
changed. Obviously, when the user creates this kind of simple motion, what
goes on inside the filter is something much more complex.

7 The concept of the “objet sonore” (sound object), theorized by Pierre Schaeffer, could also give
rise to this same ambiguity, so we prefer not to introduce this concept at the present time.

488 Theory - Section 8.2 - Simple Motion

The same thing happens in a stereo spatialization system: the motion from one
extreme to the other, using a panning parameter from 0 to 1 is simple in that
we use just one simple line segment to move the sound from one side to the
other. However, it is simple only if we do not take into consideration what is
happening inside the panner, which is actually a double control over the inten-
sities of the left and right channels, inversely proportional to one another. For
practical and logical reasons these motions are included in the first category.

Vaggione observes that “some types of representation that are valid on one
level cannot always retain their pertinence when transposed to another level.
Thus, multi-level operations do not exclude fractures, distortions, and mis-
matches between the levels. To face these mismatches, a multi-syntactical
strategy is ‘composed.’”8

For this reason, paradoxically, we have divided the types of motion into catego-
ries in order to be able to highlight the gray-zones – the areas of overlap – that
we run into every step of the way when learning and practicing electronic music
and sound design. The notions that follow should therefore not be taken as law,
nor are they intended to be exhaustive (something virtually impossible in the field
of sound research). They are simply intended to provide a journey into sound and
its different kinds of motion in order to help you acquire a deeper awareness of
them – this is a prerequisite for those who want to venture into the art of sound
organization.

Now that we have briefly described the most thorny aspects and limitations relat-
ing to the formalization of the structural levels, we can finally begin to describe
the various motion processes themselves.

(...)

8 Vaggione, 2001.

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

489Chapter 8T - The Art of Organizing Sound: Motion Processes

other sections in this chapter:

8.2 SIMPLE MOTION
 Simple unidirectional motion
 Unidirectional motion – frequency
 Unidirectional motion – duration and rhythm
 Planar motion at the beginning or end of
 unidirectional motion
 Complexity within simple unidirectional motion
 From rhythm to timbre
 From rhythm to pitch
 From the rhythm of oscillatory motion in intensity to pitch
 Simple reciprocal motion
 Asymmetric reciprocal motion
 Symmetric reciprocal motion
 Simple oscillatory motion
 Fundamental concepts
 Simple planar motion: static time?
 ”Other” kinds of time

8.3 COMPLEX MOTION
 Rhythm and duration
 Unidirectional rhythmic motion with oscillatory
 frequency motion
 Increasing rhythm and frequency
 Increasing the speed of motion in the stereo field
 Increasing rhythm and position in the stereo field
 A spiral: oscillatory motion of rhythm and
 spatialization with unidirectional frequency motion
 A spiral: decreasing oscillatory motion of rhythm
 and spatialization with decreasing unidirectional
 frequency motion
 Parallel motion in frequency
 Opposing unidirectional motion
 Increasing rhythm and decreasing amplitude and
 bandwidth of the spectrum
 Decreasing rhythm and increasing frequency
 A spiral with opposing motion: decreasing
 oscillatory motion of rhythm and spatialization with
 increasing unidirectional frequency motion
 Aspects of randomness in motion
 Increasing the amount of randomization in rhythm
 Randomizing the parameters of reading blocks
 Unstable morphology and dynamic unstable
 morphology
 Transitions from one sound property to another
 From pitch to rhythm to planar motion

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

490 Theory - Section 8.2 - Simple Motion

8.4 EXPLORING MOTION WITHIN TIMBRE
 From intervallic pitch to noise
 The importance of attack on the perception of timbre
 Timbral motion using resonant filters
 Increasing spectral complexity
 Progressive saturation in spectral complexity with
 an ascending and descending glissando
 Increasing the amount of randomization in a
 waveform
 Distribution curves for spectral components
 Distribution of components in white and pink noise
 From noise to note

8.5 COMPOUND MOTION
 Compound centrifugal or centripetal frequential
 and spatial motion
 Synchronized centrifugal/centripetal oscillatory motion
 Opposing motion: continuous increase and
 decrease in pitch using shepard tones
 Oscillatory motion of a bandpass filter applied to
 centrifugal motion
 “Skidding” centrifugal or centripetal motion:
 random walk applied to frequency
 “Skidding” compound motion: irregular but
 synchronized rhythm, pitch and spatialization
 Centrifugal and centripetal compound motion:
 space and pitch
 Compound motion based on accumulation and
 rarefaction

8.6 ALGORITHMIC CONTROL OF MOTION
 From pitch to timbre
 Algorithmic control of rhythm
 Algorithmic control of spatialization

8.7 INTRODUCTION TO MOTION SEQUENCES
 Contrasts
 Superimposed contrasts
 Alternating dynamic contrasts
 Contrasts leading to fusion: “little bang”
 Gestures and textures
 Regularity in rhythmic sequences and their function
 Polyrhythms and rhythmic irregularity
 The relationship between figure and ground
 Processi di moltiplicazione
• SOUND EXAMPLES AND INTERACTIVE EXAMPLES

• LISTENING AND ANALYSIS TEST WITH SHORT ANSWERS (MAXIMUM 30 WORDS)
• FUNDAMENTAL CONCEPTS - GLOSSARY

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

THE ART OF ORGANIZING SOUND:
MOTION PROCESSES

8.1	 MOTION PROCESSES
8.2	 SIMPLE MOTION
8.3	 COMPLEX MOTION
8.4	 EXPLORING MOTION WITHIN TIMBRE
8.5	 COMPOUND MOTION
8.6	 ALGORITHMIC CONTROL OF MOTION
8.7	 INTRODUCTION TO MOTION SEQUENCES

8P

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	The contents of Volume 1, chapters 5, 6 and 7 (theory and practice), Interlude C

and D, and Chapter 8T

OBJECTIVES
Abilities

•	To know how to envision and create different kinds of motion within sounds and
directions of motion within their timbre.

• To know how to build algorithms to interrelate different types of motion and
motion sequences.

• To know how to apply appropriate parameter values in order to cause the listener
to perceive a transition from one parameter to another within a processed sound.

CONTENTS
• Practicing simple, complex and compound motion processes

• Practicing motion processes within the timbre of a sound

• Practicing building motion sequences

ACTIVITIES
• Building and Modifying Algorithms

• Reverse Engineering Activities

SUPPORTING MATERIALS
• List of Max Objects

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

Chapter 8P - The Art of Organizing Sound: Motion Processes

8.1 MOTION PROCESSES

Since motion processes have already been described in detail in chapter 8T,
this practice chapter will consist mostly of a series of activities alongside some
analysis and “reverse engineering” exercises that may be realized in parallel
to reading the theory chapter. Note that for our purposes, the aim of reverse
engineering sounds is not to faithfully reconstruct them, but rather to be able
to redesign the motion that has been applied to the sound.
Naturally, when creating the small electronic music and sound design études
proposed throughout this chapter, you may rely on any of the techniques you
have learned in the previous chapters. Although this chapter is short, it will
nonetheless require a fair amount of work. Let’s start off with the first of our
various motion typologies.

8.2 SIMPLE MOTION
UNIDIRECTIONAL MOTION – FREQUENCY
Applying simple motion to frequency essentially amounts to creating a glissando.
Naturally, the main objects that could be used to achieve this are line~ and
curve~. Since we are already well acquainted with a wide variety of techniques
making use of these objects, we will not dwell on them here for very long.

Creating simple stepwise motion (in other words non-continuous) can be done
in several different ways. Rebuild the patch shown in figure 8.1.

Fig. 8.1 Three different ways to quantize a glissando

All three methods shown in the figure express simple unidirectional motion from
A0 to A4. The first “quantized glissando” was created with the downsamp~
object, which downsamples the input signal using a sample and hold technique.
Its argument indicates the sampling period (expressed in samples). Therefore,

545

546 Practice - Section 8.2 - Simple Motion

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

the object in the figure will sample (and hold) one value every 11025 samples –
this amounts to a quarter of a second, presuming we are using a sampling rate
of 44100 Hz. The glissando is done with MIDI values, which are converted to
frequency values after the sample and hold.

In the second example, the [round~ 1] object is used to round the signal
values to the nearest multiple of a given interval value. The argument
indicates the interval that will be used – if it is 1 the signal value will be
rounded to the closest whole number value, if it is 2 it will round it to the
closest multiple of 2, 3 to the closest multiple of 3, and so on. It is also
possible to round values to multiples of floating-point numbers: using an
argument of 0.5 would produce output values that are multiples of 0.5.
In the example shown in the figure, this quantization produces a series of
ascending semitones.

In the third example, a glissando is created using frequency values directly,
instead of via MIDI note numbers. Here, the values are rounded to mul-
tiples of 55, thereby creating a glissando across the harmonic series based
on the note A (55 Hz).

ACTIVITIES

•	 Try to discover at least three other techniques for quantizing a glissando.
•	 Reverse-engineer sound example 8A.1, using a sampled sound of your choice.

UNIDIRECTIONAL MOTION – DURATION AND RHYTHM
To create this type of motion, we can use the technique illustrated in the patch
05_13_blocks_tech_accel.maxpat (see section 5.4P). The vs.randmetro
object (see section IC.3) could additionally be used in order to introduce a little
bit of irregularity into the rhythm.

ACTIVITIES

•	 Reverse-engineer sound example 8A.2, using a sampled sound of your
choice.

•	 Create a unidirectional motion in rhythm that makes a transition from a
regular beat to an irregular one.

•	 Create a rhythmic motion where the sound progressively shortens even
though the generation of the rhythm remains fixed.

•	 Create a series of accelerandi and rallentandi using multiple delays (you can
take inspiration from the patch 06_02_multitap2.maxpat) using at least 32
delay taps.

8

8

547Chapter 8P - The Art of Organizing Sound: Motion Processes

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

(...)

other sections in this chapter:

 Planar motion at the beginning and end of
 unidirectional motion
 From rhythm to timbre
 From rhythm to pitch
 From pitch to timbre
 From the rhythm of oscillatory motion in intensity to pitch
 Simple reciprocal motion
 Simple oscillatory motion
 Simple planar motion: static time?

8.3 COMPLEX MOTION
 Spiral motion
 Parallel motion in frequency
 Opposing unidirectional motion
 Aspects of randomness in motion

8.4 EXPLORING MOTION WITHIN TIMBRE
 Timbral motion using resonant filters
 Increasing spectral complexity
 Progressive saturation in spectral complexity with
 an ascending and descending glissando
 Increasing the amount of randomization in a
 waveform
 Distribution curves for spectral components
 From noise to note

8.5 COMPOUND MOTION
 Compound centrifugal or centripetal frequential
 and spatial motion
 Synchronized centrifugal/centripetal oscillatory motion
 Oscillatory motion of a bandpass filter applied to
 centrifugal motion
 “Skidding” compound motion
 Compound motion based on accumulation and
 rarefaction

8.6 ALGORITHMIC CONTROL OF MOTION

8.7 INTRODUCTION TO MOTION SEQUENCES

• LIST OF MAX OBJECTS

MIDI

9.1	 THE MIDI STANDARD
9.2	 MIDI MESSAGES
9.3	 MIDI CONTROLLERS

9T

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	The contents of Volume 1, chapters 5, 6, 7 and 8 (theory and practice), Interlude

C and D

OBJECTIVES
Knowledge

• To know the MIDI protocol

• To know the structure of and be able to use channel and system messages
• To know the basic uses of MIDI controllers

CONTENTS
• The MIDI Protocol: Connections and Messages

• Transmitter and Receiver modules: the flow of MIDI data.
• The Structure and Use of Channel Voice Messages and Channel Mode Messages

• The Structure and Use of System Real Time Messages

• MIDI Controllers: from Quasi-Instrumental Interfaces to Control Surfaces

• Advanced MIDI Controllers: from Using a MIDI Data Glove to Gesture Mapping

TESTING
•	Test with short answers (maximum 30 words)

SUSSIDI DIDATTICI
•	Fundamental Concepts - Glossary

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

9.1 THE MIDI STANDARD

The exchange of information between electronic musical instruments, control-
ler systems and computers often makes use of the MIDI protocol, a standard
created in the early 1980s, and still widely in use today. The term MIDI is an
acronym for Musical Instrument Digital Interface. The MIDI protocol is used
by a large number of applications, often very different from one another. In
this chapter we will cover only those parts of MIDI which are essential for our
purposes, alongside some important basic information.

There are two types of MIDI devices:
 - controllers: these are devices that output MIDI messages
 - sound modules: these are devices that use the MIDI messages they receive
to generate or modify sounds.

Furthermore, sound modules themselves can be divided into two categories:
 - instruments, such as synthesizers and samplers, which output sound
 - sound processors, such as delays, reverberators and other effects, which are
used to modify external sound sources.

Sometimes, one device, such as a computer, can behave as either transmitter or
receiver, depending on how it is being used. Note that a computer by itself can-
not communicate with external devices using MIDI unless it has MIDI interface
connected to it (or a built-in MIDI Interface Card). Today, the majority of MIDI
instruments being manufactured have a built-in digital connection (such as USB)
that can connect directly to a computer, allowing it to receive and transmit MIDI
data to the computer without the need for a dedicated MIDI interface. Figure
9.1 shows a generic back panel of a MIDI interface with two MIDI Out ports,
two MIDI In ports and a USB port which connects to the computer.

Fig. 9.1 Back panel of a generic MIDI interface

Today MIDI is used in a wide variety of applications, many of which cross over
into the realm of professional audio. Furthermore, MIDI is a continually evolving
protocol, and is used by computers, the internet, mobile devices (such as mobile
phones), complex sound control systems, light boards, multimedia systems,
and countless other devices. There exist several other communication protocols
which are even faster and more flexible than MIDI (such as OSC, for example),
although they are not very commonly found on electronic musical instruments
such as keyboards, MIDI guitars, etc. As such, MIDI remains universally utilized
due to both its ease of use and strong presence in the realm of commercial
musical instrument production.

563Chapter 9T - MIDI

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

564 Theory - Section 9.2 - MIDI Messages

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

9.2 MIDI MESSAGES

Before delving into the details of MIDI messages, we feel it is necessary to first
point out that MIDI messages themselves do not contain any sound, but instead
define the way in which a particular sound, residing elsewhere in memory, will
be played. In other words, they simply express what note will be played, when
that note will begin and end, what dynamic it will have, and so forth. Therefore,
it is very important to differentiate a sound file (containing a sound’s waveform,
along with its duration, envelope, timbre, frequency, etc.) from a MIDI message,
which simply provides information relating to the way a given sound will be
played, and not its waveform. The waveform itself is usually stored somewhere
in memory (or generated by an algorithm which is stored in memory) in a sepa-
rate location from the MIDI message. In other words, a keyboard sends MIDI
data, and this data is used to trigger the sound-generating module receiving it.
This module could have waveforms stored in memory, or could use some other
type of sound-generating algorithm, and would produce sound only in reaction
to MIDI messages coming from the keyboard. In order to be completely clear:
the keyboard only sends instructions to the sound module via MIDI, and the
module receiving these instructions outputs the sound via its own audio inter-
face. One reason that there is sometimes confusion about this is that there are
two types of MIDI keyboards:

1)	a mute keyboard, or Master Keyboard, which exclusively performs
the function of a transmitter – in other words, a basic MIDI Keyboard
Controller. This kind of keyboard generates only MIDI data, which can be
sent to external MIDI receivers using via its MIDI Out port.

2)	a keyboard that works as a sampler or synthesizer – that is, a keyboard
which also contains its own internal sound generation module in addition
to generating MIDI data. This type of keyboard can act as both transmit-
ter (via MIDI out) and receiver (via MIDI in), just like a computer, but it
has an additional internal connection that sends the MIDI messages it
transmits to an internal sound generation module. When we play a key
on this kind of keyboard, we create MIDI messages that can be sent to
either an external module (via MIDI out) or to the internal module that
outputs sound from the keyboard’s audio outputs (or to both places).
Nonetheless, even in this situation the MIDI data itself (either that output
by the keyboard or sent to the internal sound module) does not contain
any sound information: the sound is always generated by an external or
built-in sound module.

As we will learn in the next section, MIDI controllers come in all shapes and
sizes. In addition to keyboards, there are also MIDI guitars, MIDI string and wind
instruments, MIDI percussion and pedals (even Key Pedalboards, usually one or
two octaves, and generally used for low-pitched sounds like organ pedals), just
to name a few. These are all controllers whose shape and use is similar to that
of the acoustic instruments they emulate, but which, as we have said before, are
only used to send MIDI messages to a sound module – either external or built-in.

565Chapter 9T - MIDI

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

This module could contain sounds that match the interface (such as the sound
of a guitar played by a MIDI guitar controller) or not (for example the sound of a
flute or automobile horn being activated by a MIDI clarinet).

Now that we have hopefully cleared-up the general concept of MIDI and what
types of information are not included in MIDI messages, let’s move on to learn
about the actual information that can be contained in them. The most basic
use of MIDI is a sound module responding to a message resulting from a key
being played (Note On) and the same key being released (Note Off) on a mute
keyboard, along with pressure associated with playing that key. This pressure is
called Key Velocity, because it is actually measured as the speed with which the
key was played (not actually its pressure). It corresponds to the dynamic that note
would have if it were played on a piano.

Because everything in MIDI is expressed in terms of numbers, we need to know
the convention that has been adopted. This convention (as we learned in section
1.4T) means that each note (or better yet, each key) corresponds to a particular
number (Key Number, in MIDI terminology): middle C is equal to 60, C# equal to
61, D to 62, D# to 63, etc.

The possible note values range from 0 to 127, even if the MIDI instruments
themselves are not capable of producing every available note. A MIDI keyboard
with the same range as the piano would only be able to produce note values
between 21 and 108.1

Analogously, each dynamic corresponds to a number ranging between 0 and
127. The variation in dynamics within the sound generating module is generally
on a logarithmic scale, in order to better match the ear’s perception of dynamics
and thus make the step between any two values have the same audible change
in dynamics.

The MIDI protocol, to a limited extent, also allows the performance of notes
outside the tempered tuning system2, either by using instruments that are set up
to handle tunings other than equal temperament (this is heavily dependent on
the instrument being used – not all instruments are designed to handle alternate
tunings), or by sending MIDI information that determines a variation in pitch for
each note (with respect to its “normal” pitch), before the note is played.

1 If you happen to have a controller with fewer octaves than the sounds available in the sound
module you are using, you can always change the position of the sound by associating it with the
keys an octave higher or lower, so that it falls within the instrument’s actual playable range.
2 See section 1.4T in the first volume for information about tuning systems.

566 Theory - Section 9.2 - MIDI Messages

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

This information is called Pitch Bend, and has the same effect as the physical
Pitch Bend Wheel (or Pitch Bender) controller found on practically every MIDI
instrument. This controller is generally some kind of wheel or slider that lets you
momentarily alter the intonation of the notes being played.

Fig. 9.2 A generic Pitch Bend Wheel

Furthermore, it is possible to select between different types of sounds (timbres
or programs) stored in the instrument itself. There is a dedicated MIDI message,
called Program Change, that lets you select a sound from among the different
ones available in the instrument.

Let’s now take an in-depth look at the two types of MIDI messages:
• Channel Messages
• System Messages

CHANNEL MESSAGES
If one MIDI transmitter (a computer, for example) is connected to several instru-
ments, it is important to be able to establish a way of sending MIDI messages
to just one particular instrument, otherwise all the instruments would simulta-
neously play the same “part.” For this reason, each MIDI message is associated
with a specific channel number, so each instrument can be set to handle only
the messages that are relevant to it – in other words, only those messages
which have the same channel number that the user has defined for the instru-
ment itself. Channel Messages, are therefore addressed to a specific channel,
and can be received and handled only by instruments that are set to receive
on that particular channel. There are two types of Channel Messages: Channel
Voice Messages, which deal with performance modes and execution times, and
Channel Mode Messages which indicate the behavior of the receiving device.
Let’s begin by taking a look at the main Channel Voice Messages: Note On,
After Touch, Polyphonic Key Pressure, Note Off, Program Change, Pitch Bend
and Control Change.

NOTE ON
The Note On message corresponds to playing a given key on a MIDI keyboard
or otherwise activating a note using one of the previously mentioned MIDI
controllers. In addition to the note number (or Key Number) and Key Velocity,

U P

DOWN

567Chapter 9T - MIDI

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

this message also contains the MIDI channel number. In this instance the Key
Velocity could be more aptly called Attack Velocity since it relates to the speed
with which the key was played.

Just to give an example, a MIDI message that plays middle C is composed of
three pieces of information: 144 60 120. The first number (called the Status
Byte) is 144 and this value represents a “Note On” message, indicating a key
has been pressed. The second number (called the First Data Byte) is 60, and this
represents the note, or Key Number (middle C in this case). The third number
(called the Second Data Byte3) is 120 and corresponds to the Attack Velocity
(the maximum value for which is 127). So, what about the MIDI channel? This
information is included in the first number. A Note On can actually be activated
using any number between 144 and 159 as the Status Byte. If the first number
is 144 (as it is here) the note is sent on MIDI channel 1, if the number were
145 it would be sent on midi channel 2, and so on, until number 159, which
indicates transmission on channel 16.

NOTE ON MESSAGE

Status Byte 1st Status Byte 2nd Status Byte

Message
Sent

Note ON + MIDI Channel Note Number Attack Velocity

Range of
Values
Transmitted

144 – 159 0 – 127 0 – 127

Message
Contents

144 = Note ON MIDI ch. 1
145 = Note ON MIDI ch. 2
etc.........
.........up until
159 = Note ON MIDI ch. 16

0 = C, first octave 4
1 = C#, first octave
etc.........
.........up until
127 = G, last octave

0 = no attack
1 = minimum amplitude
etc.........
.........up until
127 = maximum amplitude

4(...)

3 You should be aware that sometimes the Status Byte is referred to as the 1st byte, the first Data
Byte as the 2nd byte and the second Data Byte as the 3rd byte. Regardless of the terminology used,
the content of the three bytes is the same, whether you split them into two groups (Status Byte
and Data Bytes), or if the bytes are simply numbered according to the order in which they are sent
and received.
4 According to the MIDI standard, there are different ways of numbering octaves. Here, we are
defining the lowest octave that can be represented by MIDI as octave -2, and the highest octave as
octave 8. Taking into consideration that the highest octave only goes as high as G because of the
128-note limitation inherent in MIDI, there are a total of 10 and a half octaves from -2 to 8. With
this definition, middle C on a piano keyboard falls in the third octave, and can therefore be referred
to as C3. The standard 440 Hz A is thus called A3.

568 Theory - Section 9.2 - MIDI Messages

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

 other sections in this chapter:

 Channel pressure (or channel after touch)
 Polyphonic key pressure (or polyphonic after touch)
 Note off
 Program change
 Pitch bend
 Control change
 System messages

9.3 MIDI CONTROLLERS
 Simple controllers
 Control surfaces
 Midi sensors, midi data glove and motion tracking

• TEST WITH SHORT ANSWERS (MAXIMUM 30 WORDS)
• FUNDAMENTAL CONCEPTS

• GLOSSARY

MIDI AND REAL-TIME CONTROL

9.1	 MIDI AND MAX
9.2	 MIDI MESSAGE MANAGEMENT
9.3	 MIDI AND POLYPHONY
9.4	 CONTROLLING A MONOPHONIC SYNTH

9P

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
•	The contents of Volume 1, chapters 5, 6, 7 and 8 (theory and practice), Interlude

C and D and chapter 9T

OBJECTIVES
Abilities
• To be able to use Max to manage MIDI data flow within a system of intercon-

nected virtual devices.
• To be able to use Max to manage MIDI data flow (including polyphonic data)

between MIDI hardware devices and software.

CONTENTS
• MIDI objects in Max and how they are used to manage messages

• Advanced MIDI polyphony management in between Max and external MIDI hardware.

SUPPORTING MATERIALS
•	List of Max objects - List of attributes for specific Max objects

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

9.1 MIDI AND MAX

Up to now we have only lightly touched on the subject of MIDI in the Practice
chapters of this series. In this chapter we will finally delve a little deeper into
some aspects of the relationship between Max and MIDI in order to provide
some essential information about their combined use.

In addition to note messages, which were already covered in section IB.1,
other types of MIDI messages may also be sent and used to modify the para-
meters of the instrument (or effect) receiving them. Thus far, we have only
been using MIDI to communicate with the built-in synthesizer of the compu-
ter’s operating system, but it is nonetheless also possible to interface with any
kind of MIDI device.

In Max’s Options menu you can open up the MIDI Setup dialog. This window
contains a list of all the MIDI devices – both physical and virtual – which are
connected to the computer (see figure 9.1).

Fig. 9.1 The MIDI Setup window

The window includes both a list of input devices (those that can send MIDI
messages to Max) as well as output devices (which can receive MIDI messages
from Max). As you can see, some of the devices shown may be used for both
input and output. This would be the case for a device such as a physical MIDI
interface (not a virtual one) connected to the computer which has ports for both
MIDI IN and MIDI OUT connections.

Each device can usually handle 16 communication channels of MIDI data.
However, one device could actually be able to control several instruments
simultaneously, and some of these instruments could even be polytimbral –
that is, capable of producing sounds with different timbres simultaneously. In
this scenario, different MIDI channels would be used to address the different
instruments, or different sections of a polytimbral instrument. For example,
if we connect a digital piano, a polytimbral synthesizer and a reverb unit, we
could decide to send MIDI messages to the digital piano on channel 1, to the

591Chapter 9P - MIDI and Real-Time Control

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

592 Practice - Section 9.1 - MIDI and Max

polytimbral syntheziser on channels 2, 3, 4 and 5 (to which we have assigned
four different timbres), and to the reverb on channel 6. The noteout object,
which has been used extensively throughout these first two volumes, has three
inlets: the first for the MIDI note value, the second for the velocity and the third
for the MIDI channel.

Each device has a name and we can additionally define an abbreviation and a
channel offset.1 using the MIDI Setup window. Each of the MIDI objects in Max
can refer to a particular device using one of these parameters (generally given
as arguments to the object).

In the MIDI Setup window, any device can be activated or deactivated by cli-
cking on its checkbox (located in the “On” column), as well have its abbrevia-
tion or channel offset modified. Note the “AU DLS Synth 1” device which is
the virtual synthesizer in Mac OSX (or the analogous device in Windows, which
is called Microsoft DirectMusic DLS Synth): this is the synthesizer that we have
been using up to now for all the MIDI examples.

Finally, some information about the devices called “to Max 1,” “to Max 2,”
“from Max 1” and “from Max 2”: these are virtual connections between Max
and other programs running on the same computer, and are only available on
Mac OSX. If you launch a program that uses MIDI (such as a sequencer) while
Max is running, you will also see these virtual Max devices among the list of
interfaces recognized by the program. This way you can send MIDI messages to
Max using the “to Max 1” (or 2) port, as well as receive MIDI messages from
Max using the “from Max 1” (or 2) port. In order to do the same thing on
Windows, you need to use third-party software such as LoopBe1 (http://www.
nerds.de) or LoopMIDI (http://www.tobias-erichsen.de).

1 As we have already mentioned, there are 16 MIDI channels numbered from 1 to 16. However,
because of the channel offset it is possible to use higher values, since the offset is added to the
channel number. For example, you can see in the figure that device “a” in the Outputs list has an
offset of 16. This means that its channels (1-16) will be seen by Max as channel 17-32. Therefore
when we send a note message on channel 17, we are actually sending it to channel 1 on device b.
The arguments to the MIDI objects let us specify the name of the device and channel, or only the
channel (with a possible offset). In other words, with the settings shown in figure 9.1, the objects
[noteout b 2] and [noteout 18] will both send messages to the same device and channel: the
second channel on device b.

593Chapter 9P - MIDI and Real-Time Control

9.2 MIDI MESSAGE MANAGEMENT

In addition to the noteout object, used to send MIDI note messages, there is also
a notein object that receives note messages from an external device, such as an
actual (hardware) keyboard. Moreover, Max has a variety of other built-in objects
capable of handling MIDI messages; some of these are shown in figure 9.2.

Fig. 9.2 Some other MIDI objects

The ctlin and ctlout objects receive and send control change messages.
These messages are generally sent by controllers capable of transmitting a
continuous stream of numerical values, such as the modulation wheel found
on countless MIDI keyboards (and often used to control the a sound’s vibrato),
or pedals, faders, etc. (see chapter 9.3T). There are 128 controllers (numbered
from 0 to 127) available on each MIDI channel, and each controller can be used
to transmit (or receive) values between 0 and 127. Control change messages are
generally used to modify some characteristic of an instrument’s sound (such as
adding vibrato to a sound, or changing the cutoff frequency of a filter) or some
parameter of an effect (such as controlling the amount of distortion applied to
the sound of an electric guitar being sent through a distortion effect).

The bendin and bendout objects receive and send pitch bend messages.
These values (between 0 and 127) determine the modification of a note’s pitch,
used to simulate small glissandi on string instruments such as a guitar or violin,
or on winds like clarinet or sax. The control mechanism used for this on MIDI
keyboards is generally some kind of wheel.

The touchin and touchout objects receive and send after touch messages.
These messages are output by MIDI keyboards based on the pressure exerted
on the entire keyboard while keys are being held down. This is often used to
modify some parameter of the sound, such as its volume or the cutoff frequency
of a filter, and is therefore used similarly to a control change. Once again, the
value range is between 0 and 127. The after touch message is global for the
entire keyboard – the same message will be sent regardless of the key or keys
that are being played. There is another MIDI message, polyphonic key pressure
(not shown in the figure), that can send an independent pressure value for each
key that is depressed, however this feature is rarely found on keyboards with
the exception of perhaps some of the most expensive ones. That having been
said, most keyboards are able to send global after touch messages.

594 Practice - Section 9.2 - MIDI Message Management

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

The pgmin and pgmout objects receive and send program change messages,
which are the equivalent of changing presets. Sending a program change
message (yet again a value between 0 and 127) to a synthesizer (either real or
virtual) tells it to change the timbre that it will be used to play subsequent notes.
Note that in the Max environment, program change values are between 1 and
128, and are converted into values between 0 and 127 (the values are simply
decremented by 1) before being sent to the device.

MIDI objects in Max can have the name of the device2, the MIDI channel num-
ber or both as arguments (see footnote 1). For objects that receive MIDI messa-
ges, if the channel number is given as an argument, the associated outlet will
disappear; see figure 9.3.

Fig. 9.3 Arguments to objects that receive MIDI messages

This figure provides an example for each possible combination of arguments.
Note that the objects in the last two rows have one less outlet – they are missing
the outlet corresponding to the MIDI channel, because this has been provided
as an argument. Taking into consideration the device abbreviation and channel
offset settings shown in the MIDI Setup window in figure 9.1, the objects in
the last row will receive the messages on the same channel and from the same
device as those in the row just above it.

The ctlin and ctlout objects deal with arguments in a slightly different way.
There are 128 controllers per MIDI channel (numbered 0 to 127), and each of
these can send values between 0 and 127. So, if these objects have just one
argument, it is considered to be the controller number. This argument can be
preceded by the device name, followed by the channel number, or both. If we
want to specify a MIDI channel without defining a specific controller, we can
use the value -1 as a controller number (see figure 9.4).

2 The device name can be its abbreviation, which consists of a single letter, or the full name of the
device as it appears in the “Name” column in the MIDI Setup window. When the full name is made
up of several words separated by spaces, the name should be provided in quotes.

595Chapter 9P - MIDI and Real-Time Control

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

Fig. 9.4 Arguments for the ctlin object

The first outlet always corresponds to the value output by the controller. In the
event that the object only has two outlets, the second outlet will correspond
either to the MIDI channel number, as in the case of [ctlin 7] and [ctlin b
7], or the controller number, as in the case of [ctlin b -1 1] and [ctlin -1
17]. Take a moment to think carefully about this and be able to explain why.

If we double-click on a MIDI object while the patch is in performance mode,
a contextual menu will appear, allowing one of the available devices to be
selected. The selected device would be used in place of any that may have been
provided as an argument to the object.

Now let’s take a look at a patch that lets us modify the sound of a software
or hardware synthesizer connected to the computer via MIDI. Open the file
09_01_MIDI_synth.maxpat, shown in figure 9.5.

Fig. 9.5 The file 9_01_MIDI_synth.maxpat

By default, this patch connects to the computer’s internal synthesizer, but it
is always possible to use another device by changing the settings in the MIDI
Setup window. The kslider object on the upper left is in “Polyphonic” mode,
and therefore capable of sending note on and note off messages.3 The [flush]
message connected to the object is used to send a note off for all of the cur-
rently active notes.

3 We have already discussed this mode, which can be set via the inspector, in section IB.1 in the
first volume.

596 Practice - Section 9.2 - MIDI Message Management

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

(...)

other sections in this chapter:

9.3 	 MIDI AND POLYPHONY
	 The adsr~ object
	 When there are not enough polyphonic voices:
	 the “steal” attribute
	 The function object and using the sustain points
	 Eliminating note off with stripnote

9.4 	 Controlling a monophonic synth

•	List of Max objects - List of attributes for specific Max objects

MAX FOR LIVE

IE.1	 AN INTRODUCTION TO MAX FOR LIVE
IE.2	 BASICS – CREATING AN AUDIO EFFECT WITH M4L
IE.3	 VIRTUAL INSTRUMENTS WITH M4L
IE.4	 MAX MIDI EFFECTS
IE.5	 LIVE API AND LIVE OBJECT MODEL (LOM)

Interlude E

LEARNING AGENDA
PREREQUISITES FOR THE CHAPTER
• The contents of Volume 1, chapters 5, 6, 7, 8 and 9 (theory and practice) and Interludes

C and D
• Knowledge of the main functions of the Ableton Live program

OBJECTIVES
Abilities

• To know how to create a Max for Live device

• To know how to control the Live environment using the Live API

CONTENTS
• Building Audio and MIDI devices with Max for Live

• Building virtual instruments with Max for Live

• Using the Live API
• The hierarchical structure of the Live Object Model

ACTIVITIES
•	Building and Modifying algorithms

SUPPORTING MATERIALS
•	List of Max objects - List of attributes, messages and actions for specific Max

objects - Glossary

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

IE.1 AN INTRODUCTION TO MAX FOR LIVE

In order to be able to follow along with this Interlude, you need to have a user
license for both Max for Live and Ableton Live.1 Since the information contained
here is almost exclusively geared toward the use of Max for Live, it will not be a
prerequisite for understanding future chapters in this series. Those who do not
have the licenses mentioned above can, therefore, skip a large part of this inter-
lude. We only recommend that you read the section entitled “Parameters of live.*
objects” in paragraph IE.2, because it illustrates the characteristics of the standard
Max for Live interface objects that can also be used in a standard Max patch.

WHAT IS ABLETON LIVE?
Ableton Live (or more simply, Live) is a DAW (Digital Audio Workstation) applica-
tion – in other words software designed for recording, manipulating and playing
back audio tracks. In addition to this it can also handle MIDI sequences which
can be used to control either external hardware or virtual instruments internal to
the application itself. Live’s most interesting feature is the ability to handle both
audio and MIDI tracks non-linearly. Although the vast majority of DAW systems
and sequencers actually put the sequences along a timeline that (needless to
say) runs linearly through time, Live is actually able to trigger sequences indepen-
dently of one another, and therefore create a kind of real-time arrangement of
them that can be modified at will during performance.

Since this text is not intended to be a manual for Live, we will assume that you
already have some knowledge of the program’s main functions. In particular,
this implies a general familiarity with the overall structure of the Live set and its
sections, including the Help section and Live lessons, the use of audio clips and
MIDI in “Session View” and “Arrangement View” modes, the use of standard
Live devices, the use of the Group function to create Audio Racks containing
multiple devices, the use of different device chains within an Audio Rack, the use
of automation and the use of envelopes inside clips.

WHAT IS MAX FOR LIVE?
Max for Live is an extension of Live that allows Max patching language to be
used to create new plug-ins (called devices in Live jargon)2 which can be used
inside the Live application itself. Max for Live can be used to control different
operations in Live, such as changing the volume or panning of a track, stopping
or starting a clip, or even modifying the parameters of other devices.

You do not need a full Max license in order to use the devices created with Max
for Live (henceforth referred to as M4L)3 – you only need an M4L users’ license

1 As of Live version 9, Max for Live is included in the packages available with Live Suite.
2 We already mentioned plug-ins in section 3.8T in the first volume. They are basically software
components that are “hosted” inside another program and used to further augment its functionality.
Some typical examples of audio plug-ins are effects like compressors, delays and equalizers or virtual
instruments such as synthesizers and samplers.
3 M4L is the abbreviation commonly used for “Max for Live” by its user community.

629Interlude E - Max for Live

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

630 Practice - Section IE.2 - Basics – Creating an Audio Effect with M4L

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

in addition to your Live license. Those who have M4L but not Max can create
Max patches, but with some limitations: for example, the multichannel system
is available only with the full license of Max. Note that this only applies to the
creation of new patches: a device containing a multichannel algorithm can be
used by those who own only the M4L license but cannot be changed.

IE.2 BASICS – CREATING AN AUDIO EFFECT WITH M4L
First of all, we strongly suggest that you read all of the sections of this chap-
ter in order! In other words, even if you just want to use M4L to create an
Instrument and not an Audio Effect, you shouldn’t skip over that section
because it also contains information that is essential to the understanding of
subsequent sections.

Before proceeding any further, make sure that you have installed Max for Live
on your computer, in addition to all of the M4L packages available in your
account at the www.ableton.com website.

In the first column of the Live Device Browser (the area located to the left of the
tracks in Live’s main window), select the Max for Live category. Three folders
should then appear in the second column of the Browser: Max Audio Effect,
Max Instrument and Max MIDI Effect. These three folders are used, respectively,
to group together audio effects, virtual instruments and MIDI effects created
with M4L. Now, open the Max Audio Effect folder, find the “Max Chorus”
device (the list is in alphabetical order) and drag it to an audio track (figure IE.1).

Fig. IE.1 The “Max Chorus” device

631Interlude E - Max for Live

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

The device, visible in the lower part of the figure, was actually written in Max.
To see the associated patch, you will need to click on the first of the three cir-
cular icons located on the upper right side of the device’s title bar (figure IE.2).

Fig. IE.2 Opening the patch of an M4L device

This will cause the Max application to be launched allowing you to be able to
see and modify the patch. The patch initially opens in presentation mode, and
by clicking on the familiar icon that enables and disables this mode (the little
blackboard in the lower part of the patcher window), the patch can be switched
to patching mode.
The patch associated with the “Max Chorus” device is shown in figure IE.3.

Fig. IE.3 The patch for the “Max Chorus” device

632 Practice - Section IE.2 - Basics – Creating an Audio Effect with M4L

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

Since this is a very simple patch, we won’t bother to describe it. Note, however
the pair of teeth~ objects in the lower half of the patch – these are simply
comb filters whose feed-forward delay and feedback delay times can be adjust-
ed independently (unlike the comb~ object).
Furthermore, notice the title in the patcher window: “Max Chorus.amxd”. The
suffix for a patch used as a Live device is .amxd and not .maxpat. Try adding an
audio clip to the track to test out the device. You can then try out other M4L
audio effect devices, and open their associated patches to see how they work.
Have Fun!

Now let’s take a look at how to create a new M4L device. To begin with, notice
that the first device in the list inside the Max Audio Effect folder is simply called
“Max Audio Effect” and that it has a different icon from the other devices.
This is actually a template that we can use as the basis for creating our new
device. Drag it to an audio track, or alternatively double-click on its icon, and
the default device will appear on the selected track (figure IE.4).

Fig. IE.4 The default device for audio effects

When you open this device you can modify it and save it under a new name. By
default, M4L will ask you to save it inside the Max Audio Effect folder located
in your “User Library.” We suggest that you do not change this path, but rather
optionally create a sub-folder where you can collect your own devices.

633Interlude E - Max for Live

The default device contains only two objects: plugin~ and plugout~. The
former receives audio signals from the track (or from a previous device if there is
one) and the latter sends audio to the track’s output (or to a subsequent device,
if there is one). These two objects basically replace the adc~ and dac~ objects
used in normal Max patches.

Let’s try building a slapback delay (see chapter 6.2P). Modify the device as
shown in figure IE.5, and save the patch under the name “My Slapback Delay.
amxd”.

Fig. IE.5 Our first device: a slapback delay

Notice that a horizontal line labeled “Device Vertical Limit” will appear when
the patch is in edit mode. Only objects located above this line will be visible
in the device loaded by Live. As you can see, our device is not in presentation
mode; a device can be automatically opened in presentation mode, just as a
normal Max patch can, by activating the “Open in Presentation” attribute in
the patcher inspector (see Interlude D, section ID.2). Naturally, in this case,
all of the objects that we want to use must also be included in presentation
mode.

The circular object visible on the upper right is a live.dial – this is the “Live
version” of the standard dial object that we are already familiar with.4 This
object handles numerical values between 0 and 127 by default, but we will
shortly see some common features of the “live.*” object set that allow this range
to be customized.5 Load an audio clip into the track and try out the device.

4 You can find this object (along with all the Max for Live objects) in the palette under the eight icon
of the upper Toolbar. If you cannot find it, you can always create it by typing the “l” (lower-case
“L”) key when the patch is in edit mode. This will cause a generic object box to appear with a text
completion menu containing all the names of the objects in the Live category.
5 We are using the shorthand term “live.*” here to mean any Max object in the Live category whose
name begins with the characters “live.”.

634 Practice - Section IE.2 - Basics – Creating an Audio Effect with M4L

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

THE PARAMETERS OF THE “LIVE.*” OBJECTS
Let’s pause for a moment here, and look at the live.dial object in depth, in
order to present some important features common to all of the objects in the
“live.*” object set.

As we have already said, the object’s default output values are between 0 and
127. Naturally, the object’s number format and its value range can be changed.
If you open the object’s inspector you will notice that there are a series of attri-
butes in the “Parameter” category which are features of the “live.*” objects.
Locate the following attributes in the list: “Type”, “Range/Enum”, “Unit Style”
and “Steps” (figure IE.6).

Fig. IE.6 The live.dial inspector

(...)

635Interlude E - Max for Live

from “Electronic Music and Sound Design” Vol. 2 by A. Cipriani and M. Giri - © Contemponet 2020 - All rights reserved

other sections in this chapter:

 Creating a device in presentation mode
 The names of the “live.*” objects and the parameters
 window
 Automating parameters in m4l
 Modulating parameters in m4l
 Synchronizing a device with the live transport
 Using max interface objects in m4l
 Send and receive in a m4l device
 Annotation and hints
 Freeze device
 Preset and pattrstorage in M4L

IE.3 VIRTUAL INSTRUMENT WITH M4L

IE.4 MAX MIDI EFFECTS

IE.5 LIVE API AND LIVE OBJECT MODEL (LOM)
 Defining a path
 Setting and observing variables (properties)
 Modulating parameters with live.remote~
 Map for the live api: the live object model (lom)
 Determining the current track
 Class functions
 Addressing an element with the mouse
 Obtaining information via live.object and live.observer
 M4l abstractions and other resources
 Automatically controlling all the parameters in a device

• LIST OF MAX OBJECTS - LIST OF ATTRIBUTES, ARGUMENTS AND ACTIONS FOR SPECIFIC MAX

OBJECTS - GLOSSARY

!"###

!"""#$%&'()*%&('#$%) C! " # $ % & ' " (%)

!"#$$%&'()*+,-(,%&,*.*/%0(,1,)*2,(,

!"#$%&'()*'+%(,-.,#'/.-"'0(1'2''''3$456#'7 .*

!"#$%&'()$*+,-)$*
.(/*0',(/*1#-)2(

7

8
9':

.;%.().
0
9'<

.%.
3"#45()

&
,4*/

0
$,4*%&

'
*6)

0
&
'
*7
#$,8

&

!"#$$%&'()*+,-(,%&,*.*/%0(,1,)*2,(,

3"#45()&,4*/0$,4*%&'*6)0&'*7#$,8&
9:#)(;*%&'*<(%45,4#*=,5:*/%>*?*.*@)"0A#*B

!"#$%&

+,-,'./! 012,%! .&2! 3.)*/(2! 3%1&245! 2($,).',%&6! 7/%$84! '($9&,:1(6! 4/,$,&-6! 4$;177,&-! <! =,),&-6!
>%/?*9%&?!.&2!@1/',$9.&&(/!<!+(/.?!A,&(45!($9%(46!/%%*,&-6!B/.&-(;6!$9%;146!$%)7!.&2!.//*.44!B,/'(;46!
9.4(;6!,'$9!49,B',&-6!;(C(;4(6!C.;,.7/(!2(/.?6!D.;*/14<3';%&-!./-%;,'9)!<!E;(.',C(!F4(4!%B!+?&.),$4!
>;%$(44%;45!(&C(/%*(!B%//%"(;46!$%)*;(44%;46!/,),'(;46!/,C(!&%;)./,G(;46!(H*.&2(;46!-.'(46!4,2(!$9.,&46!
21$8,&-!<!=9(!0;'!%B!I;-.&,G,&-!3%1&25!4,)*/(6!$%)*/(H!.&2!$%)*%1&2!)%',%&!*;%$(44(46!)%',%&!
",'9,&!',)7;(6!./-%;,'9),$!$%&';%/!%B!)%',%&6!)%',%&!4(:1(&$(4!<!@J+J!.&2!K.&2/,&-!@J+J!@(44.-(4!
,&!@.H!<!@.H!B%;!A,C(5!.12,%!(BB($'46!C,;'1./!,&4';1)(&'46!@J+J!(BB($'46!A,C(!0>J!.&2!A,C(!I7L($'!@%2(/#

M,'9!'9(,;!N/($';%&,$!@14,$!.&2!3%1&2!+(4,-&5!=9(%;?!.&2!>;.$',$(!",'9!@.H!.&2!@3>!O###P!0/(44.&2;%!E,*;,.&,!.&2!
@.1;,G,%!Q,;,!9.C(!*;%21$(2!.! 4(;,(4!%B!R,&'(;.$',C(!.&2!(&9.&$(2!7%%84S! '9.'!*;(4(&'! '9(! 4'12(&'!%B! $%)*1'(;!
)14,$!",'9!'9(!B,&(4'!.&2!)%4'!$%)*;(9(&4,C(!(/($';%.$%14',$!$1;;,$1/1)!,&!'9(!"%;/2#!T?!R,//14';.',&-S!'9(!'(H'!",'9!
.!"(./'9!%B!B,-1;(4!.&2!$/(.;/?!(H*/.,&(2!(:1.',%&46!'9(?!'.8(!'9(!;(.2(;!R1&2(;!'9(!9%%2S!.&2!;(C(./!'9(!./-%;,'9)4!
'9.'!).8(!%1;!$%)*1',&-!).$9,&(4!R4,&-S#!T?!14,&-!+.C,2!U,$.;(//,V4!,&$;(2,7/?!*%"(;B1/!.&2!,&'1,',C(!)(2,.<'%%/8,'!
W!@.H!'%!$;(.'(!91&2;(24!%B!4?&'9(4,46!4,-&./!*;%$(44,&-6!./-%;,'9),$!$%)*%4,',%&6!,&'(;.$',C(!*(;B%;).&$(6!.&2!.12,%!
.&./?4,4!4%B'".;(!(H.)*/(46!E,*;,.&,!.&2!Q,;,!9.C(!*;%C,2(2!'9(!)(.&4!B%;!4'12(&'4!'%!/(.;&!7?!9(.;,&-6!7?!'%1$9,&-6!
7?!)%2,B?,&-6!7?!2(4,-&,&-6!7?!$;(.',&-6!.&2!7?!$%)*%4,&-#!O###P!J!B,;)/?!7(/,(C(!'9.'!'9,4!4(;,(4!7?!E,*;,.&,!.&2!Q,;,6!
'9(4(!R,&'(;.$',C(!.&2!(&9.&$(2!7%%84S6!O###P!4('!'9(!4'.-(!B%;!'9(!&(H'!-(&(;.',%&!%B!,&&%C.'%;4#!O###P!
J&!N/($';%&,$!@14,$!.&2!3%1&2!+(4,-&6!E,*;,.&,!.&2!Q,;,!B((2!'9(!9.&246!'9(?!B((2!'9(!(.;46!.&2!'9(?!B((2!'9(!),&24!
%B!'9(!4'12(&'4!,&!".?4!.&2!'%!.!2(-;((!'9.'!&%!$%)*1'(;!)14,$!'(H'7%%8!9.4!(C(;!2%&(#
OB;%)!'9(!X%;("%;2!7?!'$%()*+,-"./)012*6!T(;8/((!E%//(-(!%B!@14,$P

=9,4!,4!'9(!4($%&2!,&!.!4(;,(4!%B!C%/1)(4!2(2,$.'(2!'%!2,-,'./!4?&'9(4,4!.&2!4%1&2!2(4,-&#!!J'!,4!*.;'!%B!.!4';1$'1;(2!
'(.$9,&-!)('9%2!,&$%;*%;.',&-!.!4174'.&',./!.)%1&'!%B!%&/,&(!41**%;',&-!).'(;,./45!91&2;(24!%B!4%1&2!(H.)*/(4!.&2!
,&'(;.$',C(!(H.)*/(46!*;%-;.)4!";,''(&!,&!@.H6!.4!"(//!.4!.!/,7;.;?!%B!@.H!%7L($'4!$;(.'(2!(4*($,.//?!B%;!'9,4!7%%8#

34566378'9,:;<';37;,$%<.1'9%;(2!RY,;'1./!3%1&2S6!.!'(H'7%%8!%&!E4%1&2!*;%-;.)),&-#!K,4!$%)*%4,',%&4!9.C(!
7((&!*(;B%;)(2!.'!).L%;!B(4',C./4!.&2!(/($';%&,$!)14,$!C(&1(4!.&2!;(/(.4(2!%&!E+4!.&2!+Y+4!,441(2!7?!E%)*1'(;!@14,$!
Z%1;&./6!J&'(;&.',%&./!E%)*1'(;!@14,$!E%&B(;(&$(6!E[J6!N2,*.&6!NC(;-/.2(!.4!"(//!.4!%'9(;4#!K(!9.4!";,''(&!)14,$!B%;!'9(!
T(,L,&-!I*(;.!=9(.'(;6!.4!"(//!.4!B%;!B,/)46!'9(.';(6!.&2!2%$1)(&'.;,(4!,&!"9,$9!.)7,(&'!4%1&246!2,./%-6!.&2!)14,$!.//!
B14(!'%-('9(;6!,&'(;$9.&-(.7/?#!K(!,4!.!'(&1;(2!*;%B(44%;!,&!(/($';%&,$!)14,$!.'!'9(!E%&4(;C.'%;?!%B!X;%4,&%&(6!.!B%1&2,&-!
)()7(;!%B!'9(!N2,4%&!3'12,%!,&!\%)(6!.&2!.!)()7(;!%B!'9(!(2,'%;,./!7%.;2!%B!'9(!L%1;&./!I;-.&,4(2!3%1&2!!O*17/,49(2!
7?!E.)7;,2-(!@14,$!>;(44P#!M,'9! '9(!$%//($',C(!N2,4%&!3'12,%6!9(!$%)*%4(2!]! 41;;%1&2!4%1&2';.$84! B%;! 4,/(&'! B,/)4!
,&$/12,&-!T.''/(49,*!!>%'()8,&6!=9(!E.7,&('!%B!+;#!E./,-.;,6!.&2!J&B(;&%6!.//!*17/,49(2!%&!+Y+!7?!'9(!E,&('($.!2,!T%/%-&.#!
K(!9.4!-,C(&! 4(),&.;4!.'! 4(C(;./!N1;%*(.&!.&2!0)(;,$.&!1&,C(;4,',(46! ,&$/12,&-! '9(!F&,C(;4,'?!%B!E./,B%;&,.! <! 3.&'.!
T.;7.;.6!3,7(/,14!0$.2()?!,&!K(/4,&8,6!=$9.,8%C48?!E%&4(;C.'%;?!,&!@%4$%"6!+@F<A(,$(4'(;#

=3>';?;9,@;';!,4!.!$%)*%4(;6!'(.$9(;6!.&2!.12,%!4%B'".;(!2(C(/%*(;#!K(!'(.$9(4!E%)*%4,',%&!.'!'9(!E%&4(;C.'%;?!
%B! A.',&.! .&2! @.H! *;%-;.)),&-! .'! '9(! E%&4(;C.'%;,(4! %B! A.',&.! .&2! X;%4,&%&(#! K(! ";,'(4! ,&4';1)(&'./! .&2!
(/($';%.$%14',$!)14,$6! $%)*1'(;! .**/,$.',%&4! B%;! ./-%;,'9),$! $%)*%4,',%&6! (/($';%.$%14',$! ,)*;%C,4.',%&! .&2! /,C(!
*(;B%;).&$(6!.&2!9.4!*17/,49(2!4(C(;./!'1'%;,./4!%&!@.H#!K(!B%1&2(2!0).G,&-![%,4(46!.!4%B'".;(!9%14(!'9.'!2(C(/%*4!
)14,$!.**/,$.',%&4!.&2!*/1-<,&4!B%;!)%7,/(!2(C,$(4!.&2!$%)*1'(;4#!K(!,4!07/('%&V4!*.;'&(;!B%;!'9(!2(C(/%*)(&'!%B!@.H!
B%;!A,C(!2(C,$(4#!K(!".4!R.;',4'!,&!;(4,2(&$(S!.'!'9(!E,'^!J&'(;&.',%&./(!2(4!0;'(4!,&!>.;,46!.&2!.'!Q\0@N!,&!A?%&#!K(!
$%//.7%;.'(2!",'9!)()7(;4!%B!'9(![,$%2!J&4','1'(6!.!;(4(.;$9!$(&'(;!%B!'9(!_$%/(![%;)./(!31*^;,(1;(!,&!>.;,46!%&!.!
*;%L($'!.7%1'!'9(!*9,/%4%*9?!%B!4%1&2#

